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CIS 5560

Lecture 23
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW10 due Wednesday Apr 24 at 11:59PM on Gradescope
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Recap of Last Lecture
• Malicious-verifier/“standard” ZK


• ZKPs for GI and for QR achieve standard ZK

• ZKP for 3-coloring
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What if V is NOT HONEST?
An Interactive Protocol (P,V) is honest-verifier perfect 
zero-knowledge for a language if there exists a PPT 
simulator S such that for every , the following two 
distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V(P, V ) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge 
for a language if for every PPT , there exists a 
(expected) poly time simulator  s.t. for every , the 
following two distributions are identical:

𝐿  𝑽 ∗

S 𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V*(P, V*) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF



Simulator S works as follows:

1. First set  for a random z and feed s to .𝑠 =
𝑧2

𝑦𝑏
𝑉 ∗

2. Let .b′ = 𝑉 ∗(𝑠)

3. If , output  and stop.  𝑏′ = 𝑏 (s, b, z)

4. Otherwise, go back to step 1 and repeat. (also called 
“rewinding”).

Lemma: 

(1) S runs in expected polynomial-time. 

(2) When S outputs a view, it is identically distributed to the 

view of  in a real execution. 𝑉 ∗



Zero Knowledge Proof for 3-Coloring
NP-Complete Problem:
Every other problem in NP can be 
reduced to it.



Sender S
Receiver R

Bit b

Commitment Schemes
Commitment Protocol  

(𝐷𝐸𝐶, 𝐶𝑂𝑀 ) ← (𝑆(𝑏, 1𝜆), 𝑅(1𝜆))

COMDEC
b, DEC

ACCEPT/
REJECT

Completeness: R always accepts in an honest execution.
Hiding: COM reveals no information about .b
Binding: Sender cannot find  such that  and 
yet  accepts .

(b′ , 𝖣𝖤𝖢′ ) b ≠ b′ 

R (b′ , 𝖣𝖤𝖢′ )



Sender S Receiver R

Bit b

A Commitment Scheme from any OWP

𝐶𝑂𝑀 = (𝑓(𝑟), 𝐻𝐶𝐵(𝑟) ⊕ 𝑏)

𝐷𝐸𝐶 = 𝑟

𝑂𝑃𝐸𝑁: (𝑏, 𝑟)

Let  
Check that 
1.  and  
2.  

𝐶𝑂𝑀 = (𝑥, 𝑦) .

𝑓(𝑟) = 𝑥
𝐻𝐶𝐵(𝑟) ⊕ 𝑏 = y

1. Completeness: Exercise.

2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation. 



Zero Knowledge Proof for 3COL
Graph G 
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a 
random perm 
of the colors

𝜌:𝑉 → {𝑅, 𝐵, 𝐺}

𝜌(1), …, 𝜌(𝑛)

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

1. Check the openings 
2. Check:    
3.   Check:   .

ρ(𝑖), ρ(𝑗) ∈ {𝑅, 𝐵, 𝐺}
ρ(𝑖) ≠ ρ(𝑗)

𝜌(1) 𝜌(𝑛)
…



Today’s Lecture
• Complete proof of ZK for 3COL

• “Proof of Knowledge”

• Non-Interactive Zero-Knowledge
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Why is 3COL Protocol ZK?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows:

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Lemma:  
(1) Assuming the commitment is 

hiding, S runs in expected 
polynomial-time.  

(2) When S outputs a view, it is 
comp. indist. from the view of 

 in a real execution. 𝑉 ∗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows (call this Hybrid 0) 

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 0 and 1 are computationally 
indistinguishable, assuming the commitment scheme is 
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the 
hiding property of the commitment scheme, assuming 
there is a distinguisher between hybrids 0 and 1.



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Here is the real view of V* (Hybrid 2)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all edges correctly.

4. If , output the commitments and 
openings  and  as the transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as 
Hybrid 2 and, with probability , decides to 
throw it away and resample.

1 − 1/ |𝐸 |



Put together:
Theorem: The 3COL protocol is zero knowledge.



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the public 

key is , a product of two primes together with an e 

that is relatively prime to )

𝑁
𝜑(𝑁) .

• Encrypted bitcoin (or Zcash):  “I have enough money 
to pay you.” (e.g. I will publish an encryption of my 
bank account and prove to you that my balance is 
≥ $𝑋 . )

• Running programs on encrypted inputs: Given Enc(x) 
and y, prove that y = PROG(x).



Examples of NP Assertions
• Running programs on encrypted inputs: Given Enc(x) 

and y, prove that y = PROG(x).

More generally: A tool to enforce honest behavior 
without revealing information.


