CIS 5560

Cryptography
Lecture 23

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan


http://pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW10 due Wednesday Apr 24 at 11:59PM on Gradescope



Recap of Last Lecture

« Malicious-verifier/“standard” ZK
« ZKPs for Gl and for QR achieve standard ZK
- ZKP for 3-coloring



What if Vis NOT HONEST?

An Interactive Protocol (PV) is honest-verifier perfect
zero-knowledge for a language L if there exists a PPT
simulator S such that for every x € L, the following two
distributions are identical:

1. viewy (P, V) 2. .S(x, 1%

An Interactive Protocol (PV) is perfect zero-knowledge
for a language L if for every PPT V7, there exists a

(expected) poly time simulator § s.t. for every x € L, the
following two distributions are identical:

1. viewy«(P, V¥) 2. .S(x, 1%




Simulator S works as follows:
2

z
1. First set s = — for a random z and feed s to V*.
Yy

2. Let b’ = V*(s).
3.If b’ = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Lemma:
(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically distributed to the

view of V¥ in a real execution.



Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:

Every other problem in NP can be
reduced to it.




Commitment Schemes

ACCEPT/
, Commitment Protocol REJECT
Bit b ; ;
(DEC,COM) « (S(b,1*), R(1%))
Q > Receiver R
Sender S

b, DEC

\ 4

Completeness: R always accepts in an honest execution.
Hiding: COM reveals no information about b.

Binding: Sender cannot find (b’, DEC’) such that b # b’ and
yet R accepts (b’, DEC’).



A Commitment Scheme from any OWP

Bit b
Q COM = (f(r), HCB(r) & b) Q

Sender S > Receiver R
DEC=r Let COM = (x, y) :
OPEN: (b, r) Check that
1. f(r) = x and

\ 4

2. HCB(r) &b =y

1. Completeness: Exercise.
2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation.



Zero Knowledge Proof f9r 3COL

Graph G ]
Graph G
=(V,E) g
4 ces 4 3

p(1) o p(n)

]2 — 8

Come up with a random edge (i, j)
random perm <
of the colors

p:V— (R, B,G)

open p(i) and p(j)

[
>

1. Check the openings
2. Check: p(i), p(j) € {R, B,G)

3. Check: p(i) # p(J) -



Today’s Lecture

- Complete proof of ZK for 3COL
» “Proof of Knowledge”
* Non-Interactive Zero-Knowledge



Why is 3COL Protocol ZK?

Simulator S works as follows:

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k);r) Yz
random, different colors :
Color all other vertices red.

~ edge (la .]) Q
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Lemma: {Com(p(k);re) iz,
(1) Assuming the commitment is "
hiding, S runs in expected
polynomial-time. . edee Q. )) g
(2) When S outputs a view, it is

comp. indist. from the view of

% . . send openings r; and r;
V in a real execution. P ol AR




Why is this zero-knowledge?

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i, j*)

Color vertices i and j* with {Com(p(k);r) Yz
random, different colors :
Color all other vertices red.

~ edge (la .]) g
colors to V™ and get edge (i, j)

y

2. Feed the commitments of the

3 |If <i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i, j*)

Permute a legal coloring and {Com(p(k);ry) Yy
color all vertices correctly. g

~ edge (i, j) Q
colors to V™ and get edge (i, j) |

y

2. Feed the commitments of the

3 |If (i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally
indistinguishable, assuming the commitment scheme is
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the
hiding property of the commitment scheme, assuming
there is a distinguisher between hybrids 0 and 1.



Why is this zero-knowledge?

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i, j*)

Permute a legal coloring and {Com(p(k);ry) Yy
color all vertices correctly. g

~ edge (i, j) Q
colors to V™ and get edge (i, j) |

y

2. Feed the commitments of the

3 |If (i,j) ?é (i*,j*), go back and send openings ¥; and I‘j:
repeat.

4. If (i,j) = (i%, j¥), output the commitments and
openings r; and r;as the simulated transcript.



Why is this zero-knowledge?

Here is the real view of V* (Hybrid 2)

1.F. l . I | | E.* .*;

Permute a legal coloring and {Com(p(k);re) Vi,
color all edges correctly. g
. ) edge (i, ])
2. Feed the commitments of the <
colors to V™ and get edge (i, j)
3. " 1 '*, [ : send openings ¥; and ri
repeat:

4. l—f—éiﬁ'}—;@*ﬂ'*%,—output the commitments and

openings r; and r;as the transcript.



Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as

Hybrid 2 and, with probability 1 -1/ | E | , decides to
throw it away and resample.



Put together:

Theorem: The 3COL protocol is zero knowledge.



Examples of NP Assertions

« My public key is well-formed (e.g. in RSA, the public

key is N, a product of two primes together with an e

that is relatively prime to QD(N) .)

« Encrypted bitcoin (or Zcash): “l have enough money
to pay you.” (e.g. | will publish an encryption of my
bank account and prove to you that my balance is

> $X.)

« Running programs on encrypted inputs: Given Enc(x)
and vy, prove that y = PROG(x).



Examples of NP Assertions

« Running programs on encrypted inputs: Given Enc(x)
and y, prove that y = PROG(x).

More generally: A tool to enforce honest behavior
without revealing information.



