
1

CIS 5560

Lecture 23
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW10 due Wednesday Apr 24 at 11:59PM on Gradescope

2

Recap of Last Lecture
• Malicious-verifier/“standard” ZK

• ZKPs for GI and for QR achieve standard ZK

• ZKP for 3-coloring

3

What if V is NOT HONEST?
An Interactive Protocol (P,V) is honest-verifier perfect
zero-knowledge for a language if there exists a PPT
simulator S such that for every , the following two
distributions are identical:

𝐿
𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V(P, V) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge
for a language if for every PPT , there exists a
(expected) poly time simulator s.t. for every , the
following two distributions are identical:

𝐿 𝑽 ∗

S 𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V*(P, V*) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF

Simulator S works as follows:

1. First set for a random z and feed s to .𝑠 =
𝑧2

𝑦𝑏
𝑉 ∗

2. Let .b′ = 𝑉 ∗(𝑠)

3. If , output and stop. 𝑏′ = 𝑏 (s, b, z)

4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Lemma:

(1) S runs in expected polynomial-time.

(2) When S outputs a view, it is identically distributed to the

view of in a real execution. 𝑉 ∗

Zero Knowledge Proof for 3-Coloring
NP-Complete Problem:
Every other problem in NP can be
reduced to it.

Sender S
Receiver R

Bit b

Commitment Schemes
Commitment Protocol

(𝐷𝐸𝐶, 𝐶𝑂𝑀) ← (𝑆(𝑏, 1𝜆), 𝑅(1𝜆))

COMDEC
b, DEC

ACCEPT/
REJECT

Completeness: R always accepts in an honest execution.
Hiding: COM reveals no information about .b
Binding: Sender cannot find such that and
yet accepts .

(b′ , 𝖣𝖤𝖢′) b ≠ b′

R (b′ , 𝖣𝖤𝖢′)

Sender S Receiver R

Bit b

A Commitment Scheme from any OWP

𝐶𝑂𝑀 = (𝑓(𝑟), 𝐻𝐶𝐵(𝑟) ⊕ 𝑏)

𝐷𝐸𝐶 = 𝑟

𝑂𝑃𝐸𝑁: (𝑏, 𝑟)

Let
Check that
1. and
2.

𝐶𝑂𝑀 = (𝑥, 𝑦) .

𝑓(𝑟) = 𝑥
𝐻𝐶𝐵(𝑟) ⊕ 𝑏 = y

1. Completeness: Exercise.

2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation.

Zero Knowledge Proof for 3COL
Graph G
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a
random perm
of the colors

𝜌:𝑉 → {𝑅, 𝐵, 𝐺}

𝜌(1), …, 𝜌(𝑛)

 random edge (𝑖, 𝑗)

 open and ρ(𝑖) ρ(𝑗)

1. Check the openings
2. Check:
3. Check: .

ρ(𝑖), ρ(𝑗) ∈ {𝑅, 𝐵, 𝐺}
ρ(𝑖) ≠ ρ(𝑗)

𝜌(1) 𝜌(𝑛)
…

Today’s Lecture
• Complete proof of ZK for 3COL

• “Proof of Knowledge”

• Non-Interactive Zero-Knowledge

10

Why is 3COL Protocol ZK?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Simulator S works as follows:

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the
colors to and get edge 𝑉 ∗ (𝑖, 𝑗)

3. If , go back and
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices and with
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and
openings and as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗

Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Lemma:
(1) Assuming the commitment is

hiding, S runs in expected
polynomial-time.

(2) When S outputs a view, it is
comp. indist. from the view of

 in a real execution. 𝑉 ∗

Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the
colors to and get edge 𝑉 ∗ (𝑖, 𝑗)

3. If , go back and
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices and with
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and
openings and as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗

Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the
colors to and get edge 𝑉 ∗ (𝑖, 𝑗)

3. If , go back and
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and
color all vertices correctly.

4. If , output the commitments and
openings and as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗

Why is this zero-knowledge?
Claim: Hybrids 0 and 1 are computationally
indistinguishable, assuming the commitment scheme is
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the
hiding property of the commitment scheme, assuming
there is a distinguisher between hybrids 0 and 1.

Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the
colors to and get edge 𝑉 ∗ (𝑖, 𝑗)

3. If , go back and
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and
color all vertices correctly.

4. If , output the commitments and
openings and as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗

Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings and 𝑟𝑖 𝑟𝑗

Here is the real view of V* (Hybrid 2)

1. First pick a random edge (𝑖∗, 𝑗∗)

2. Feed the commitments of the
colors to and get edge 𝑉 ∗ (𝑖, 𝑗)

3. If , go back and
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and
color all edges correctly.

4. If , output the commitments and
openings and as the transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗

Why is this zero-knowledge?
Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as
Hybrid 2 and, with probability , decides to
throw it away and resample.

1 − 1/ |𝐸 |

Put together:
Theorem: The 3COL protocol is zero knowledge.

Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the public

key is , a product of two primes together with an e

that is relatively prime to)

𝑁
𝜑(𝑁) .

• Encrypted bitcoin (or Zcash): “I have enough money
to pay you.” (e.g. I will publish an encryption of my
bank account and prove to you that my balance is
≥ $𝑋 .)

• Running programs on encrypted inputs: Given Enc(x)
and y, prove that y = PROG(x).

Examples of NP Assertions
• Running programs on encrypted inputs: Given Enc(x)

and y, prove that y = PROG(x).

More generally: A tool to enforce honest behavior
without revealing information.

