CIS 5560

Cryptography Lecture 23

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

Announcements

• HW10 due Wednesday Apr 24 at 11:59PM on Gradescope

Recap of Last Lecture

- Malicious-verifier/"standard" ZK
 - ZKPs for GI and for QR achieve standard ZK
- ZKP for 3-coloring

What if V is NOT HONEST?

An Interactive Protocol (P,V) is **honest-verifier** perfect zero-knowledge for a language L if there exists a PPT simulator S such that for every $x \in L$, the following two distributions are identical:

1. view_V(P, V) 2.
$$S(x, 1^{\lambda})$$

OLD DEF

An Interactive Protocol (P,V) is **perfect zero-knowledge** for a language *L* if **for every PPT** V^* , there exists a (expected) poly time simulator *S* s.t. for every $x \in L$, the following two distributions are identical:

1. view $_{V^*}(P, V^*)$

2.
$$S(x, 1^{\lambda})$$

Simulator S works as follows:

1. First set
$$s = \frac{z^2}{y^b}$$
 for a random z and feed s to V^* .
2. Let b' = $V^*(s)$.

3. If b' = b, output (s, b, z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Lemma:

- (1) S runs in expected polynomial-time.
- (2) When S outputs a view, it is identically distributed to the view of V^* in a real execution.

Zero Knowledge Proof for 3-Coloring

NP-Complete Problem:

Every other problem in NP can be reduced to it.

Commitment Schemes

Completeness: R always accepts in an honest execution. **Hiding:** COM reveals no information about b.

Binding: Sender cannot find (b', DEC') such that $b \neq b'$ and yet *R* accepts (b', DEC').

A Commitment Scheme from any OWP

1. Completeness: Exercise.

- 2. Comp. Hiding: by the hardcore bit property.
- 3. Perfect Binding: because f is a permutation.

- 1. Check the openings
- 2. Check: $\rho(i), \rho(j) \in \{R, B, G\}$
- 3. Check: $\rho(i) \neq \rho(j)$.

Today's Lecture

- Complete proof of ZK for 3COL
- "Proof of Knowledge"
- Non-Interactive Zero-Knowledge

Why is 3COL Protocol ZK? Simulator S works as follows:

1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with random, different colors Color all other vertices red.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

Why is this zero-knowledge?

<u>Lemma</u>:

(1) Assuming the commitment is hiding, S runs in expected polynomial-time.

(2) When S outputs a view, it is comp. indist. from the view of V^* in a real execution.

Why is this zero-knowledge? Simulator S works as follows (call this Hybrid 0)

1. First pick a random edge (i^*, j^*)

Color vertices i^* and j^* with random, different colors Color all other vertices red.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

 $\{Com(\rho(k); r_k)\}_{k=1}^n$ edge(i, j)send openings r_i and r_j

Why is this zero-knowledge? Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*) Permute a legal coloring and color all vertices correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

edge (i, j)send openings r_i and r_j

 $\{Com(\rho(k); r_k)\}_{k=1}^n$

Why is this zero-knowledge?

Claim: Hybrids 0 and 1 are computationally indistinguishable, assuming the commitment scheme is computationally hiding.

Proof: By contradiction. Show a reduction that breaks the hiding property of the commitment scheme, assuming there is a distinguisher between hybrids 0 and 1.

Why is this zero-knowledge? Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge (i^*, j^*) Permute a legal coloring and color all vertices correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If $(i, j) \neq (i^*, j^*)$, go back and repeat.

edge (i, j)send openings r_i and r_j

 $\{Com(\rho(k); r_k)\}_{k=1}^n$

Why is this zero-knowledge? Here is the real view of V* (Hybrid 2)

1. First pick a random edge (i^*, j^*) Permute a legal coloring and color all edges correctly.

2. Feed the commitments of the colors to V^* and get edge (i, j)

3. If
$$(i, j) \neq (i^*, j^*)$$
, go back and repeat.

4. If $(i, j) = (i^*, j^*)$, output the commitments and openings r_i and r_j as the transcript.

 $\{Com(\rho(k); r_k)\}_{k=1}^n$

Why is this zero-knowledge?

Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as Hybrid 2 and, with probability 1 - 1/|E|, decides to throw it away and resample.

Put together:

Theorem: The 3COL protocol is zero knowledge.

Examples of NP Assertions

- My public key is well-formed (e.g. in RSA, the public key is N, a product of two primes together with an e that is relatively prime to $\varphi(N)$.)
- Encrypted bitcoin (or Zcash): "I have enough money to pay you." (e.g. I will publish an encryption of my bank account and prove to you that my balance is $\geq \$X$.)
- Running programs on encrypted inputs: Given Enc(x) and y, prove that y = PROG(x).

Examples of NP Assertions

 Running programs on encrypted inputs: Given Enc(x) and y, prove that y = PROG(x).

More generally: A tool to enforce honest behavior without revealing information.