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CIS 5560

Lecture 22
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 9 due Wednesday Apr 17 at 11:59PM on Gradescope

• HW10 will be released tomorrow evening/Thursday morning


• Due Wednesday Apr 24 at 11:59PM on Gradescope
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Recap of last lecture
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• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs


• Definition

• ZKP for Graph Isomorphism

• ZKP for Quadratic Residuosity
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Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language ℒ

Probabilistic  
Polynomial-timeComp. Unbounded

𝑞1

𝑎2

𝑞2

…



Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language  ℒ

𝑞1

𝑎2…

Def:  is an -language if there is a unbounded P and  
probabilistic poly-time verifier  where 
• Completeness: If , V always accepts.

• Soundness: If  regardless of the cheating 

prover strategy, V accepts with negligible probability. 

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,



How to Define Zero-Knowledge?
 is zero-knowledge if  can 

“simulate” his VIEW of the interaction all by 
himself in probabilistic polynomial time.   

(𝑃, 𝑉 ) 𝑉



Perfect Zero Knowledge: Definition
An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a PPT 
algorithm S (a simulator) such that for every , 
the following two distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational zero-
knowledge for a language if there exists a PPT 
algorithm S (a simulator) such that for every , 
the following two distributions are 
computationally indistinguishable:

𝐿 
𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )

2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Prover
Verifier

 𝐾 = 𝜌(𝐺)
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ZK Proof for Graph Isomorphism

Graph G Graph H

𝐇 = 𝝅(𝑮)
where  is a random permutation𝜌

 random challenge bit 𝑏

 send  s.t.  𝑏 = 0: 𝜋0 K = 𝜋0(𝐺)
 send  s.t.  𝑏 = 1: 𝜋1 H = 𝜋1(𝐾)



ZK Proof for QR

𝑠 = 𝑟2 (mod 𝑁 )

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:  

𝑧2 = 𝑠𝑦𝑏 (mod 𝑁)If b=1: 𝑧 = 𝑟𝑥

.ℒ = {(N, y) | ∃x ∈ ℤN, y = x2 mod N}

(𝑁, 𝑦) (𝑁, 𝑦)



Today’s Lecture
• Malicious-verifier/“standard” ZK


• ZKPs for GI and for QR achieve standard ZK

• ZKP for Quadratic Residuosity
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What if V is NOT HONEST?
An Interactive Protocol (P,V) is honest-verifier perfect 
zero-knowledge for a language if there exists a PPT 
simulator S such that for every , the following two 
distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V(P, V ) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge 
for a language if for every PPT , there exists a 
(expected) poly time simulator  s.t. for every , the 
following two distributions are identical:

𝐿  𝑽 ∗

S 𝑥 ∈ 𝐿

1. 𝗏𝗂𝖾𝗐V*(P, V*) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF



Old: Honest-Verifier ZK
Claim: The QR protocol is honest-verifier zero knowledge.

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(𝑠, 𝑏, 𝑧)

Simulator S works as follows:

1. First pick a random bit .b

2. pick a random .𝑧 ∈ 𝑍∗
𝑁

3. compute .s = 𝑧2 /𝑦𝑏

Exercise: The simulated transcript is identically distributed 
as the real transcript in the interaction (P,V).

4. output .(s, b, z)



Now: Malicious Verifier ZK
Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First pick a random  and 
“feed it to” .

s
𝑉 ∗

2. Let .b = 𝑉 ∗(𝑠)

Now what???𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗):
(𝑠, 𝑏, 𝑧)



Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set  for a random  and  and feed  to .𝑠 =
𝑧2

𝑦𝑏
z b s 𝑉 ∗

2. Let .b′￼= V*(s)

3. If , output  and stop.  b′￼= b (s, b, z)

4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Now: Malicious Verifier ZK



Simulator S works as follows:

1. First set  for a random z and feed s to .𝑠 =
𝑧2

𝑦𝑏
𝑉 ∗

2. Let .b′￼= 𝑉 ∗(𝑠)

3. If , output  and stop.  𝑏′￼= 𝑏 (s, b, z)

4. Otherwise, go back to step 1 and repeat. (also called 
“rewinding”).

Lemma: 

(1) S runs in expected polynomial-time. 

(2) When S outputs a view, it is identically distributed to the 

view of  in a real execution. 𝑉 ∗



What Made it Possible?

1. Each statement had multiple proofs of which the 
prover chooses one at random.

2. Each such proof is made of two parts: seeing 
either one on its own gives the verifier no 
knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at 
random. The prover’s ability to provide either 
part on demand convinces the verifier. 



Do all NP languages have Perfect ZK proofs?
We showed two NP languages with perfect ZK proofs. Can 
we show this for all NP languages?

Theorem [Fortnow’89, Aiello-Hastad’87] No, unless bizarre 
stuff happens in complexity theory (technically: the 
polynomial hierarchy collapses.)  



Do all NP languages have ZK proofs?
Nevertheless, today, we will show:

Theorem [Goldreich-Micali-Wigderson’87] Assuming one-
way functions exist, all of NP has computational zero-
knowledge proofs.

This theorem is amazing: it tells us that everything that can 
be proved (in the sense of Euclid) can be proved in zero 
knowledge!

Winner of 2024 Turing Award!



Zero Knowledge Proof for 3-Coloring
NP-Complete Problem:
Every other problem in NP can be 
reduced to it.



We need a commitment scheme

Sender Receiver

Message m

mCommit to m:

1. Hiding: The locked box should completely hide m.

2. Binding: Sender shouldn’t be able to open to different msg m’.

m

Open:  m,



Zero Knowledge Proof for 3COL
Graph G 
=(V,E)

Graph G

1 2

4 3

1 2

4 3

Come up with a 
random perm 
of the colors

𝜌:𝑉 → {𝑅, 𝐵, 𝐺}

𝜌(1), …, 𝜌(𝑛)

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

1. Check the openings 
2. Check:    
3.   Check:   .

ρ(𝑖), ρ(𝑗) ∈ {𝑅, 𝐵, 𝐺}
ρ(𝑖) ≠ ρ(𝑗)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Completeness: Exercise.

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Soundness: If the graph is not 3COL, in every 3-coloring (that P 
commits to), there is some edge whose end-points have the same color.
V will catch this edge and reject with probability . ≥ 1/ |𝐸 |

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Zero Knowledge Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

 random edge (𝑖, 𝑗)

 open  and  ρ(𝑖) ρ(𝑗)

Repeat  times to get the verifier to accept with probability 	 	
	

|𝑬 | ∙ 𝝀
≤ (1 − 1/ |𝐸 | )|𝐸|∙𝜆 ≤ 2−𝜆

Graph G 
=(V,E)

𝜌(1) 𝜌(𝑛)
…



Constructing 
Commitment Schemes



Sender S
Receiver R

Bit b

Commitment Schemes
Commitment Protocol  

(𝐷𝐸𝐶, 𝐶𝑂𝑀 ) ← (𝑆(𝑏, 1𝜆), 𝑅(1𝜆))

COMDEC
b, DEC

ACCEPT/
REJECT

1. Completeness: R always accepts in an honest execution.



Sender S
Receiver R

2. Computational Hiding: For every possibly malicious (PPT)   
	  

𝑅∗,
𝑣𝑖𝑒𝑤𝑅∗(𝑆(0), 𝑅∗) ≈𝑐 𝑣𝑖𝑒𝑤𝑅∗(𝑆(1), 𝑅∗)

Commitment Schemes

COMDEC
b, DEC

ACCEPT/
REJECTCommitment Protocol  

(𝐷𝐸𝐶, 𝐶𝑂𝑀 ) ← (𝑆(𝑏, 1𝜆), 𝑅(1𝜆))Bit b



Sender S
Receiver R

3. Perfect Binding: For every possibly malicious  let COM 
be the receiver’s output in an execution of  There is 
no pair of decommitments  s.t. R accepts both 

 

𝑆∗,
(𝑆∗, 𝑅) .

(𝐷𝐸𝐶0, 𝐷𝐸𝐶1)
(com, 0,𝐷𝐸𝐶0) and (com, 1,𝐷𝐸𝐶1) .

Commitment Schemes

COMDEC
b, DEC

ACCEPT/
REJECTCommitment Protocol  

(𝐷𝐸𝐶, 𝐶𝑂𝑀 ) ← (𝑆(𝑏, 1𝜆), 𝑅(1𝜆))Bit b



Sender S Receiver R

Bit b

A Commitment Scheme from any OWP

𝐶𝑂𝑀 = (𝑓(𝑟), 𝐻𝐶𝐵(𝑟) ⊕ 𝑏)

𝐷𝐸𝐶 = 𝑟

𝑂𝑃𝐸𝑁: (𝑏, 𝑟)

Let  
Check that 
1.  and  
2.  

𝐶𝑂𝑀 = (𝑥, 𝑦) .

𝑓(𝑟) = 𝑥
𝐻𝐶𝐵(𝑟) ⊕ 𝑏 = y

1. Completeness: Exercise.

2. Comp. Hiding: by the hardcore bit property.

3. Perfect Binding: because f is a permutation. 



Back to ZK Proof for 3COL
Graph G

1 2

4 3

1 2

4 3

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

 random edge (𝑖, 𝑗)

 send openings  and  ρ(i), ri ρ( j), rj

Graph G 
=(V,E)



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows:

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Lemma:  
(1) Assuming the commitment is 

hiding, S runs in expected 
polynomial-time.  

(2) When S outputs a view, it is 
comp. indist. from the view of 

 in a real execution. 𝑉 ∗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Simulator S works as follows (call this Hybrid 0) 

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to and get edge   𝑉 ∗  (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Color vertices  and  with 
random, different colors

 𝑖∗ 𝑗∗

Color all other vertices red.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 0 and 1 are computationally 
indistinguishable, assuming the commitment scheme is 
computationally hiding.

Proof: By contradiction. Show a reduction that breaks the 
hiding property of the commitment scheme, assuming 
there is a distinguisher between hybrids 0 and 1.



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Not-a-Simulator S works as follows (call this Hybrid 1)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all vertices correctly.

4. If , output the commitments and 
openings  and  as the simulated transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?

{𝐶𝑜𝑚(𝜌(𝑘); 𝑟𝑘)}𝑛
𝑘=1

edge (𝑖, 𝑗)

 send openings  and  𝑟𝑖 𝑟𝑗

Here is the real view of V* (Hybrid 2)

1. First pick a random edge   (𝑖∗, 𝑗∗)

2. Feed the commitments of the 
colors to  and get edge   𝑉 ∗ (𝑖, 𝑗)

3. If , go back and 
repeat.

(𝑖, 𝑗) ≠ (𝑖∗, 𝑗∗)

Permute a legal coloring and 
color all edges correctly.

4. If , output the commitments and 
openings  and  as the transcript.

(𝑖, 𝑗) = (𝑖∗, 𝑗∗)
𝑟𝑖 𝑟𝑗



Why is this zero-knowledge?
Claim: Hybrids 1 and 2 are identical.

Hybrid 1 merely samples from the same distribution as 
Hybrid 2 and, with probability , decides to 
throw it away and resample.

1 − 1/ |𝐸 |



Put together:
Theorem: The 3COL protocol is zero knowledge.



Examples of NP Assertions
• My public key is well-formed (e.g. in RSA, the public 

key is , a product of two primes together with an e 

that is relatively prime to )

𝑁
𝜑(𝑁) .

• Encrypted bitcoin (or Zcash):  “I have enough money 
to pay you.” (e.g. I will publish an encryption of my 
bank account and prove to you that my balance is 
≥ $𝑋 . )

• Running programs on encrypted inputs: Given Enc(x) 
and y, prove that y = PROG(x).



Examples of NP Assertions
• Running programs on encrypted inputs: Given Enc(x) 

and y, prove that y = PROG(x).

More generally: A tool to enforce honest behavior 
without revealing information.



Interaction is Necessary for ZK

𝜋

Suppose there were a non-interactive ZK proof system 
for 3COL.

Graph G Graph G

Step 1. When G is in 3COL, V accepts the proof .𝜋
(Completeness)



~𝜋 

Step 2. PPT Simulator S, given only G in 3COL, produces an 
indistinguishable proof   (Zero Knowledge).~𝜋

In particular, V accepts . ~𝝅

Interaction is Necessary for ZK

Graph G Graph G

Suppose there were a non-interactive ZK proof system 
for 3COL.



~𝜋 

Step 3. Imagine running the Simulator S on a 3COL. 

It produces a proof  which the verifier still accepts!

𝐺 ∉  
~𝜋

(WHY?! Because S and V are PPT. They together 
cannot tell if  the input graph is 3COL or not)

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof system 
for 3COL.

Graph G Graph G



𝜋

Step 4. Therefore, S is a cheating prover!  
Produces a proof for a 3COL that the verifier 
nevertheless accepts.

𝐺 ∉  

Ergo, the proof system is NOT SOUND!

Interaction is Necessary for ZK
Suppose there were a non-interactive ZK proof system 
for 3COL.

Graph G Graph G


