CIS 5560

Cryptography Lecture 21

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

Announcements

- HW 9 out
 - Due Wednesday Apr 17 at 11:59PM on Gradescope
 - Covers
 - One-time signatures
 - RSA-based signatures

Recap of last lecture

- What is a proof?
- Interactive Proofs
- Zero-knowledge interactive proofs

Interactive Proofs for a Language \mathscr{L}

Comp. Unbounded

Probabilistic Polynomial-time

Interactive Proofs for a Language \mathscr{S}

<u>Def</u>: \mathcal{L} is an <u>IP</u>-language if there is a unbounded P and **probabilistic poly-time** verifier \underline{V} where

- **Completeness**: If $x \in \mathcal{L}$, V always accepts.
- Soundness: If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.

Interactive Proofs for a Language \mathscr{L}

Def: \mathcal{L} is an <u>IP</u>-language if there is a **probabilistic poly-time** verifier \underline{V} where

- Completeness: If $x \in \mathcal{L}$, $\Pr[(P, V)(x) = accept] = 1.$
- Soundness: If $x \notin \mathscr{L}$, there is a negligible function negl s.t. for every P^* , $\Pr[(P^*, V)(x) = accept] = negl(\lambda)$.

Today's Lecture

- Recap of GNI proof
- Look at "zero-knowledge" interactive proof for Graph Isomorphism
- Definition of Zero Knowledge
- Commitment Schemes
 - Pedersen Commitment Scheme

Recapping proof of GNI

$$\mathbf{H} = \boldsymbol{\pi}(G)$$

$$\mathbf{F} = \boldsymbol{\pi}(G)$$
where ρ is a random permutation
random challenge bit b

$$\mathbf{V}$$
reifier
$$b = 0: \text{ send } \pi_0 \text{ s.t. } \mathbf{K} = \pi_0(G)$$

$$b = 1: \text{ send } \pi_1 \text{ s.t } \mathbf{H} = \pi_1(K)$$

Completeness?

H =
$$\pi(G)$$

Where ρ is a random permutation
random challenge bit b
 $b = 0$: send $\pi_0 = \rho$
 $b = 1$: send $\pi_1 = \pi \circ \rho^{-1}$

Soundness: Suppose G and H are non-isomorphic, and a prover could answer both the verifier challenges. Then,

$$\mathrm{K}=\pi_0(G)$$
 and $\mathrm{H}=\pi_1(K)$.

In other words, $\mathbf{H}=\pi_1\circ\pi_0(G)$, a contradiction!

$$\mathbf{H} = \boldsymbol{\pi}(\boldsymbol{G})$$
where ρ is a random permutation
random challenge bit b

$$b = 0: \text{ send } \pi_0 = \rho$$

$$b = 1: \text{ send } \pi_1 = \pi \circ \rho^{-1}$$

Zero Knowledge?

$$\mathbf{H} = \boldsymbol{\pi}(G)$$

$$\mathbf{W} = \boldsymbol{\mu}(G)$$
where ρ is a random permutation
random challenge bit b

$$\mathbf{V} = 0$$
: send $\pi_0 = \rho$

$$b = 0$$
: send $\pi_1 = \pi \circ \rho^{-1}$

Interactive Proof for QR

$$\mathscr{L} = \{ (N, y) \mid \exists x \in \mathbb{Z}_N, y = x^2 \mod N \}.$$

$$s = r^2 \pmod{N}$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$b \leftarrow \{0,1\}$$

$$(N, y)$$

$$(N,$$

Completeness

Claim: If $(N, y) \in L$, then the verifier accepts the proof with probability 1.

Proof:

$$z^{2} = (rx^{b})^{2} = r^{2}(x^{2})^{b} = sy^{b} \pmod{N}$$

So, the verifier's check passes and he accepts.

Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^* , the verifier accepts with probability at most 1/2.

Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some $s \in \mathbb{Z}_N^*$ s.t. the prover produces

$$z_0 : z_0^2 = s \pmod{N}$$
$$z_1 : z_1^2 = sy \pmod{N}$$

This means $(z_1/z_0)^2 = y \pmod{N}$, which tells us that $(N, y) \in L$.

This is Zero-Knowledge.

But what does that mean?

(N, y) $b \leftarrow \{0,1\}$ (N, y) $b \leftarrow \{0,1\}$ (N, y) (N,

How to Define Zero-Knowledge?

After the interaction, *V*knows:

- The theorem is true; and
- A view of the interaction
 (= transcript + randomness of V)

Pgives zero knowledge to **V**:

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P.

How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V can generate his VIEW of the interaction all by himself in probabilistic polynomial time.

How to Define Zero-Knowledge?

(P,V) is zero-knowledge if V can "simulate" his VIEW of the interaction all by himself in probabilistic polynomial time.

The Simulation Paradigm

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are indistinguishable:

1. $view_V(P, V)$

2. $S(x, 1^{\lambda})$

(P,V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is **perfect zeroknowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are **identical**:

1. $view_V(P, V)$

2. $S(x, 1^{\lambda})$

(P,V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational zeroknowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every $x \in L$, the following two distributions are computationally indistinguishable:

1. $view_V(P, V)$

2. $S(x, 1^{\lambda})$

(P,V) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.

Zero Knowledge

Claim: The QR protocol is zero knowledge.

 $view_V(P,V):$ (s,b,z)

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random
$$z \in Z_N^*$$
.

3. compute
$$s = z^2/y^b$$
.

4. output (s, b, z).

Exercise: The simulated transcript is identically distributed as the real transcript in the interaction (P,V).