CIS 5560

Cryptography
Lecture 20

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan
Announcements

• HW8 due tomorrow evening
• HW 9 out Wednesday evening
 • Due **Wednesday Apr 17** at 11:59PM on Gradescope
 • Covers
 • One-time signatures
 • RSA-based signatures
Recap of last lecture
New primitive: Digital Signatures
Digital Signatures: Definition

A triple of PPT algorithms (Gen, Sign, Verify) such that

- Key generation: $\text{Gen}(1^n) \rightarrow (\text{sk}, \text{pk})$
- Message signing: $\text{Sign}(\text{sk}, m) \rightarrow \sigma$
- Signature verification: $\text{Verify}(\text{pk}, m, \sigma) \rightarrow b \in \{0,1\}$

Correctness: For all vk, sk, m: $\text{Verify}(\text{pk}, m, \text{Sign}(\text{sk}, m)) = 1$
EUF-CMA for Signatures

\[
\begin{align*}
\text{Challenger} & \quad \text{pk} \quad \text{Adversary} \\
& \quad m_i \quad \sigma_i \\
& \quad (m^*, \sigma^*) \\
& \text{Pr} \left[m^* \not\in \{m_i\} \quad \text{and} \quad \text{Verify}(pk, m^*, \sigma^*) = 1 \right] = \text{negl}(\lambda)
\end{align*}
\]
Lamport (One-time) Signatures for arbitrary bits

Secret Key sk: \[
\begin{pmatrix}
 x_{1,0} & x_{2,0} & \cdots & x_{n,0} \\
 x_{1,1} & x_{1,1} & \cdots & x_{n,1}
\end{pmatrix}
\]

Public Key pk: \[
\begin{pmatrix}
 y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\
 y_{1,1} & y_{2,1} & \cdots & y_{n,1}
\end{pmatrix}
\]
where \(y_{i,b} = f(x_{i,b}) \).

Signing \(m \):
1. \(z := H(m) \)
2. \(\sigma = (x_{1,z_1}, x_{2,z_2}, \ldots, x_{n,z_n}) \)

Claim: Assuming \(H \) is CRH and \(f \) is a OWF, no PPT adv can produce a signature of \(m \) given a signature of a single \(m' \neq m \).

Claim: Can forge signature on any message given the signatures on (some) two messages.
(Many-time) Signature Scheme

In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature *Chains*

Step 2. How to Shrink the signatures. Idea: Signature *Trees*

Step 3. How to Shrink Alice’s storage. Idea: *Pseudorandom Trees*

Step 4. How to make Alice stateless. Idea: *Randomization*

How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1^λ): Pick primes \((P, Q)\) and let \(N = PQ\). Pick \(e\) relatively prime to \(\varphi(N)\) and let \(d = e^{-1} \pmod{\varphi(N)}\).

\[
\text{sk} = (N, d) \quad \text{and} \quad \text{pk} = (N, e, H)
\]

Sign(sk, \(m\)): Output signature \(\sigma = H(m)^d \pmod{N}\).

Verify(vk, \(m\), \(\sigma\)): Check if \(\sigma^e = H(m) \pmod{N}\).

\(H\) is a \underline{random oracle}.
Today’s lecture

• What is a proof?
• Interactive Proofs
• Zero-knowledge interactive proofs
Beyond Secure Communication

Much more than communicating securely.

- Complex Interactions: proofs, computations, games.
- Complex Adversaries: Alice or Bob, adaptively chosen.
- Complex Properties: Correctness, Privacy, Fairness.
- Many Parties: this class, MIT, the internet.
Classical Proofs

Prover writes down a string (proof); Verifier checks.

Axiom 1
Axiom 2
Axiom 1⇒A
A⇒B
QED
Proofs

Prover

Claim/Theorem

proof

Verifier

accept/reject
Efficiently Verifiable Proofs: NP

Claim/Theorem

Prover

proof

Verifier

accept/reject

Works hard

Polynomial-time
Theorem: N is a product of two prime numbers

Proof $= (P, Q)$

Accept iff $N = PQ$ and P, Q are prime
Efficiently Verifiable Proofs: NP

Claim/Theorem

Prover

Verifier

- **Works hard**
- **Polynomial-time**

Def: A language/decision procedure \mathcal{L} is simply a set of strings. So, $\mathcal{L} \subseteq \{0,1\}^*$.
Def: \mathcal{L} is an **NP**-language if there is a poly-time verifier V where

- **Completeness:** True theorems have (short) proofs.

 for all $x \in \mathcal{L}$, there is a poly($|x|$)-long witness (proof) $w \in \{0,1\}^*$ s.t. $V(x, w) = 1$.

- **Soundness:** False theorems have no short proofs.

 for all $x \notin \mathcal{L}$, there is no witness.

 That is, for all polynomially long w, $V(x, w) = 0$.

Efficiently Verifiable Proofs: NP
Theorem: \(N \) is a product of two prime numbers

Proof: \((P, Q)\)

Accept if \(N = PQ \)
and \(P, Q \) are prime

After interaction, the Verifier knows:

1) \(N \) is a product of two primes.
2) Also, the two factors of \(N \).
Theorem: Graphs G_0 and G_1 are isomorphic.

Proof $\pi : [N] \rightarrow [N]$, the isomorphism

Check $\forall i, j$:

$(\pi(i), \pi(j)) \in E_1$ iff $(i, j) \in E_0$.
Theorem: Graphs G_0 and G_1 are isomorphic.

Proof $\pi : [N] \rightarrow [N],$

the isomorphism

After interaction, Bob the Verifier knows:

1) G_0 and G_1 are isomorphic.

2) Also, the isomorphism.

Check $\forall i, j:$

$(\pi(i), \pi(j)) \in E_1$

iff $(i, j) \in E_0.$
Theorem: Boolean Formula φ is satisfiable

$\varphi(X_1, \ldots, X_N) := (X_1 \lor X_3 \lor X_N) \land \cdots \land (X_5 \lor X_{N-5} \lor X_{10})$

Proof = Satisfying assignment (x_0, \ldots, x_n)

Check $\varphi(x_1, \ldots, x_n) = 1$

After interaction, Bob the Verifier knows:

1) φ is satisfiable

2) Also, the satisfying assignment
Theorem: Boolean Formula φ is satisfiable

$$\phi(X_1, \ldots, X_N) := (X_1 \lor X_3 \lor X_N) \land \cdots \land (X_5 \lor X_{N-5} \lor X_{10})$$

Proof = Satisfying assignment (x_0, \ldots, x_n)

Check $\varphi(x_1, \ldots, x_n) = 1$

NP-Complete Problem:

Every one of the other problems can be reduced to it
Is there any other way?
Zero Knowledge Proofs

Prover

“I will prove to you that I could’ve sent you a proof if I felt like it.”
Zero Knowledge Proofs

“"I will not give you the isomorphism, but will prove to you that I could have one.”

Prover

Micali Goldwasser Rackoff
Two (Necessary) New Ingredients

1. **Interaction**: Rather than passively reading the proof, the verifier engages in a conversation with the prover.

2. **Randomness**: The verifier is randomized and can make a mistake with a (exponentially small) probability.
Interactive Proofs for a Language L

Comp. Unbounded Probabilistic Polynomial-time
Interactive Proofs for a Language \mathcal{L}

Def: \mathcal{L} is an **IP-language** if there is a unbounded P and **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$, V always accepts.
- **Soundness:** If $x \notin \mathcal{L}$, regardless of the cheating prover strategy, V accepts with negligible probability.
Def: \mathcal{L} is an IP-language if there is a **probabilistic poly-time** verifier V where

- **Completeness:** If $x \in \mathcal{L}$,
 \[\Pr[(P, V)(x) = \text{accept}] = 1. \]

- **Soundness:** If $x \notin \mathcal{L}$, there is a negligible function $\text{negl} \ s.t. \ for \ every \ P^*$,
 \[\Pr[(P^*, V)(x) = \text{accept}] = \text{negl}(\lambda). \]
Interactive Proof for QR

\[\mathcal{L} = \{(N, y) : y \text{ is a quadratic residue mod } N\} \]

\[s = r^2 \pmod{N} \]

\[b \leftarrow \{0,1\} \]

If \(b = 0 \):
\[z = r \]

If \(b = 1 \):
\[z = rx \]

Check:
\[z^2 = sy^b \pmod{N} \]
Completeness

Claim: If \((N, y) \in L \), then the verifier accepts the proof with probability 1.

Proof:

\[
z^2 = (rx^b)^2 = r^2(x^2)^b = sy^b \pmod{N}
\]

So, the verifier’s check passes and he accepts.
Soundness

Claim: If \((N, y) \notin L\), then for every cheating prover \(P^*\), the verifier accepts with probability at most 1/2.

Proof: Suppose the verifier accepts with probability > 1/2.

Then, there is some \(s \in \mathbb{Z}_N^*\) s.t. the prover produces

\[z_0 : z_0^2 = s \pmod{N}\]
\[z_1 : z_1^2 = sy \pmod{N}\]

This means \((z_1 / z_0)^2 = y \pmod{N}\), which tells us that \((N, y) \in L\).
Interactive Proof for QR

\[\mathcal{L} = \{ (N, y) : y \text{ is a quadratic residue mod } N \} . \]

\[s_i = r_i^2 \pmod{N} \]

If \(b_i = 0 \):

\[z_i = r_i \]

Check for all \(i \):

\[z_i^2 = s_i y^b \pmod{N} \]

REPEAT sequentially \(\lambda \) times.
Soundness

Claim: If $(N, y) \notin L$, then for every cheating prover P^*, the verifier accepts with probability at most $\left(\frac{1}{2}\right)^\lambda$.

Proof: Exercise.
This is Zero-Knowledge.

But what does that mean?

\[s = r^2 \pmod{N} \]

\[b \leftarrow \{0,1\} \]

If \(b = 0 \):
\[z = r \]

If \(b = 1 \):
\[z = r^x \]

Check:
\[z^2 = s y^b \pmod{N} \]
How to Define Zero-Knowledge?

After the interaction, V knows:

- The theorem is true; and
- A **view** of the interaction
 \[(= \text{transcript} + \text{randomness of } V) \]

P gives zero knowledge to V:

When the theorem is true, the view gives V nothing that he couldn’t have obtained on his own without interacting with P.
How to Define Zero-Knowledge?

\((P, V)\) is zero-knowledge if \(V\) can generate his \text{VIEW} of the interaction \text{all by himself} in \text{probabilistic polynomial time}.
How to Define Zero-Knowledge?

(P, V) is zero-knowledge if V can “simulate” his VIEW of the interaction all by himself in probabilistic polynomial time.
The Simulation Paradigm

\[\text{view}_V(P, V): \]
\[\text{Transcript} = (s, b, z), \]
\[\text{Coins} = b \]

\[n_S: \]
\[b, z) \]

PPT “simulator” \(S \)
\((N, y) \)

\[s = r^2 \pmod{N} \]
\[b \leftarrow \{0,1\} \]
If \(b=0 \): \(z = r \)
If \(b=1 \): \(z = rx \)
Check:
\[z^2 = sy^b \pmod{N} \]
An Interactive Protocol \((P,V)\) is zero-knowledge for a language \(L\) if there exists a PPT algorithm \(S\) (a simulator) such that for every \(x \in L\), the following two distributions are indistinguishable:

1. \(\text{view}_V(P,V)\)
2. \(S(x, 1^\lambda)\)

\((P,V)\) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.
Perfect Zero Knowledge: Definition

An Interactive Protocol \((P, V)\) is **perfect zero-knowledge** for a language \(L\) if there exists a PPT algorithm \(S\) (a simulator) such that for every \(x \in L\), the following two distributions are identical:

1. \(\text{view}_V(P, V)\)
2. \(S(x, 1^\lambda)\)

\(P, V\) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.
Statistical Zero Knowledge: Definition

An Interactive Protocol \((P, V)\) is statistical zero-knowledge for a language \(L\) if there exists a PPT algorithm \(S\) (a simulator) such that for every \(x \in L\), the following two distributions are statistically indistinguishable:

1. \(\text{view}_V(P, V)\)
2. \(S(x, 1^\lambda)\)

\((P, V)\) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.
Computational Zero Knowledge: Definition

An Interactive Protocol \((P,V)\) is computational zero-knowledge for a language \(L\) if there exists a PPT algorithm \(S\) (a simulator) such that for every \(x \in L\), the following two distributions are computationally indistinguishable:

1. \(\text{view}_V(P,V)\)
2. \(S(x, 1^\lambda)\)

\((P,V)\) is a zero-knowledge interactive protocol if it is complete, sound and zero-knowledge.
Zero Knowledge

Claim: The QR protocol is zero knowledge.

\[\text{view}_V(P, V) : (s, b, z) \]

Simulator S works as follows:

1. First pick a random bit \(b \).
2. Pick a random \(z \in \mathbb{Z}_N^* \).
3. Compute \(s = z^2 / y^b \mod N \).
4. Output \((s, b, z) \).

Exercise: The simulated transcript is identically distributed as the real transcript in the interaction \((P, V)\).
What if V is NOT HONEST.

An Interactive Protocol (P,V) is **honest-verifier** perfect zero-knowledge for a language \(L \) if there exists a PPT simulator S such that for every \(x \in L \), the following two distributions are identical:

\[
\text{view}_V(P, V) \quad 2. \ S(x, 1^\lambda)
\]

An Interactive Protocol (P,V) is **perfect zero-knowledge** for a language \(L \) if for every PPT \(V^* \), there exists a (expected) poly time simulator S s.t. for every \(x \in L \), the following two distributions are identical:

\[
1. \ \text{view}_{V^*}(P, V^*) \quad 2. \ S(x, 1^\lambda)
\]
Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First pick a random s and “feed it to” V^*.
2. Let $b = V^*(s)$.

Then check:

$$z^2 = sy^b \pmod{N}$$

view$_V^*$(P, V*):

$$(s, b, z)$$

Now what???
Theorem: The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set $s = z^2$ for a random z and b and feed s to V^*.
2. Let $b' = V^*(s^b)$.
3. If $b' = b$, output (s, b, z) and stop.
4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).
Simulator S works as follows:

1. First set $S = \frac{z^2}{s}$ for a random z and feed s to V^*.
2. Let $b' = V^*(s^b)$.
3. If $b' = b$, output (s, b, z) and stop.
4. Otherwise, go back to step 1 and repeat. (also called “rewinding”).

Lemma:

(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically distributed to the view of V^* in a real execution.
What Made it Possible?

1. *Each statement had multiple proofs* of which the prover chooses one at random.

2. *Each such proof is made of two parts*: seeing either one on its own gives the verifier no knowledge; seeing both imply 100% correctness.

3. *Verifier chooses to see either part, at random.*
 The prover’s ability to provide either part on demand convinces the verifier.