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CIS 5560

Lecture 20
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW8 due tomorrow evening 
• HW 9 out Wednesday evening 

• Due Wednesday Apr 17 at 11:59PM on Gradescope

• Covers 


• One-time signatures

• RSA-based signatures
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Recap of last lecture
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New primitive: Digital Signatures
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Dan Boneh
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Digital Signatures: Definition

Correctness: For all vk, sk, m:  𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms  such that 

• Key generation:  
• Message signing:  
• Signature verification: 

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}



Dan Boneh

EUF-CMA for Signatures

6

Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and 
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)



Lamport (One-time) Signatures for arbitrary bits

Signing :             1.  

                            2. 

m z := H(m)
σ = (x1,z1

, x2,z2
, …, xn,zn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming  is CRH and  is a OWF, no PPT 
adv can produce a signature of  given a signature of 
a single .

H 𝑓
𝑚

𝑚′ ≠ 𝑚
Claim: Can forge signature on any message given the 
signatures on (some) two messages. 

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

7

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)



(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 5 (optional). How to make Alice stateless and 
deterministic.  Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains
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How to Fix Vanilla RSA
Start with any trapdoor permutation, e.g. RSA.

Gen( ): Pick primes  and let  Pick  relatively 
prime to  and let   

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁 ) 𝑑 = 𝑒−1 (mod 𝜑(𝑁 )) .

Sign( ): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify( ): Check if 𝗏𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk =    and   pk =  (𝑁, 𝑑) (𝑁, 𝑒, 𝑯 )

H is a random oracle.



Today’s lecture
• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs

•
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Beyond Secure Communication

Alice Bob

x y

Much more than communicating securely.

• Complex Interactions: proofs, computations, games. 

• Complex Adversaries: Alice or Bob, adaptively chosen.

• Complex Properties: Correctness, Privacy, Fairness.

• Many Parties: this class, MIT, the internet.



Classical Proofs

Prover writes down a string (proof); Verifier checks. 

a

b

a2 + b2

Axiom 1 
Axiom 2 
Axiom 1⇒A 

A⇒B 
QED

Steve Cook Leonid Levin



Proofs

Prover Verifier

Claim/Theorem

proof

accept/
reject



Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝖭𝖯

Works hard Polynomial-time



Theorem:  is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff 

and  are prime 

N = PQ
P, Q



Prover Verifier

Claim/Theorem

proof

accept/
reject

Works hard Polynomial-time

Def: A language/decision procedure  is simply a set 

of strings. So, .

ℒ
ℒ ⊆ {0,1}∗

Efficiently Verifiable Proofs: 𝖭𝖯



Def:  is an -language if there is a poly-time verifier  where 
• Completeness: True theorems have (short) proofs.  

	 for all , there is a poly( )-long witness 
	 (proof)  s.t. 


• Soundness: False theorems have no short proofs.  
	 for all , there is no witness.  
      That is, for all polynomially long , 

ℒ 𝖭𝖯 𝑉

x ∈ ℒ |x |
w ∈ {0,1}* 𝑉(𝑥, 𝑤) = 1.

x ∉ ℒ
w 𝑉(𝑥, 𝑤) = 0.

Efficiently Verifiable Proofs: 𝖭𝖯

Prover Verifier

Claim/Theorem

proof

accept/
reject



Theorem:  is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff 

and  are prime 

N = PQ
P, Q

After interaction, the Verifier knows:

1)  is a product of two primes. N

2) Also, the two factors of . N



Theorem: Graphs  and  are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N ] → [N ]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check 




iff .

∀𝑖, 𝑗:
(π(i), π( j)) ∈ E1

(i, j) ∈ E0



Theorem: Graphs  and  are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N ] → [N ]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check 




iff .

∀𝑖, 𝑗:
(π(i), π( j)) ∈ E1

(i, j) ∈ E0

After interaction, Bob the Verifier knows:
1)  and  are isomorphic. 𝐺0 𝐺1

2) Also, the isomorphism. 



Theorem: Boolean Formula  is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment
(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1

After interaction, Bob the Verifier knows:
1)  is satisfiableφ

2) Also, the satisfying assignment 



Theorem: Boolean Formula  is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment

NP-Complete Problem:
Every one of the other problems can be reduced to it

(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1



Is there any other way?



Zero Knowledge Proofs

Prover

“I will prove to you that I 
could’ve sent you a proof  
if I felt like it.”



Zero Knowledge Proofs

Prover

“I will not give you the 
isomorphism, but will prove to you 
that I could have one.”



Two (Necessary) New Ingredients
1. Interaction: Rather than passively reading the proof, the 
verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make 
a mistake with a (exponentially small) probability.



Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language ℒ

Probabilistic  
Polynomial-timeComp. Unbounded

𝑞1

𝑎2

𝑞2

…



Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language  ℒ

𝑞1

𝑎2…

Def:  is an -language if there is a unbounded P and  
probabilistic poly-time verifier  where 
• Completeness: If , V always accepts.

• Soundness: If  regardless of the cheating 

prover strategy, V accepts with negligible probability. 

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,



Interactive Proofs for a Language  ℒ

Def:  is an -language if there is a probabilistic 
poly-time verifier  where 
• Completeness: If ,  
	 	 

• Soundness: If  there is a negligible 

function  s.t. for every   
	 	

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
Pr[(P, 𝑉 )(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 1.

x ∉ ℒ,
negl 𝑷 ∗,

Pr[(𝑃∗, 𝑉)(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = negl(𝜆) .



Interactive Proof for QR

𝑠 = 𝑟2 (mod 𝑁 )

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:  

𝑧2 = 𝑠𝑦𝑏 (mod 𝑁)If b=1: 
𝑧 = 𝑟𝑥

 .ℒ = {(𝑁, 𝑦):𝑦 is a quadratic residue mod 𝑁}

(𝑁, 𝑦) (𝑁, 𝑦)



Completeness

Claim: If  then the verifier accepts the 
proof with probability 1.

(𝑁, 𝑦) ∈ 𝐿,

𝑧2 = (𝑟𝑥𝑏)2 = 𝑟2(𝑥2)𝑏 = 𝑠𝑦
𝑏
 (mod 𝑁 )

So, the verifier’s check passes and he accepts.

Proof:



Soundness

Claim: If  then for every cheating prover 

, the verifier accepts with probability at most 1/2.
(𝑁, 𝑦) ∉ 𝐿,

𝑃∗
Suppose the verifier accepts with probability > 1/2.Proof:

Then, there is some  s.t. the prover produces  𝑠 ∈ 𝑍∗
𝑁

𝑧0 :𝑧2
0 = 𝑠 (mod 𝑁 )

𝑧1 :𝑧2
1 = 𝑠𝑦 (mod 𝑁 )

This means  , which tells us 

that .

 (𝑧1/𝑧0)2 = 𝑦 (mod 𝑁)
(𝑁, 𝑦) ∈ 𝐿



Interactive Proof for QR

𝑠𝑖 = 𝑟2
𝑖  (mod 𝑁 )

𝑏𝑖 ← {0,1}

If =0: 𝑏𝑖
𝑧𝑖 = 𝑟𝑖

Check for all i:  
𝑧2

𝑖 = 𝑠𝑖𝑦𝑏 (mod 𝑁)If =1:𝑏𝑖
𝑧𝑖 = 𝑥𝑟𝑖

 .ℒ = {(𝑁, 𝑦):𝑦 is a quadratic residue mod 𝑁}

(𝑁, 𝑦) (𝑁, 𝑦)

REPEAT sequentially  times.𝜆



Soundness

Claim: If  then for every cheating prover 

, the verifier accepts with probability at most .

(𝑁, 𝑦) ∉ 𝐿,

𝑃∗ (
1
2

)
𝜆

Exercise.Proof:



This is Zero-Knowledge.

𝑠 = 𝑟2 (mod 𝑁 )

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:  

𝑧2 = 𝑠𝑦𝑏 (mod 𝑁)If b=1: 
𝑧 = 𝑟𝑥

But what does that mean?

(𝑁, 𝑦) (𝑁, 𝑦)



How to Define Zero-Knowledge?

After the interaction,  knows:𝑽
• The theorem is true; and

• A view of the interaction  
 (= transcript + randomness of V)

 gives zero knowledge to :𝑷 𝑽
When the theorem is true, the view gives V 
nothing that he couldn’t have obtained on 
his own without interacting with P.



How to Define Zero-Knowledge?

 is zero-knowledge if  can 
generate his VIEW of the interaction all by 
himself in probabilistic polynomial time.   

(𝑃, 𝑉 ) 𝑉



How to Define Zero-Knowledge?

 is zero-knowledge if  can 
“simulate” his VIEW of the interaction all by 
himself in probabilistic polynomial time.   

(𝑃, 𝑉 ) 𝑉



The Simulation Paradigm

  
Coins = 

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
Transcript =  (𝑠, 𝑏, 𝑧),

𝑏

PPT “simulator” 𝑺
(𝑁, 𝑦)𝑠𝑖𝑚𝑆:

(𝑠, 𝑏, 𝑧)

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(𝑠, 𝑏, 𝑧)



Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge 
for a language if there exists a PPT algorithm 
S (a simulator) such that for every , the 
following two distributions are indistinguishable:

𝐿 
𝒙 ∈ 𝑳

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for every 

, the following two distributions are 
identical:

𝐿 

𝑥 ∈ 𝐿
1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zero-
knowledge for a language if there exists a 
PPT algorithm S (a simulator) such that for every 

, the following two distributions are 
statistically indistinguishable:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational 
zero-knowledge for a language if there exists 
a PPT algorithm S (a simulator) such that for 
every , the following two distributions 
are computationally indistinguishable:

𝐿 

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 )
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it 
is complete, sound and zero-knowledge.



Zero Knowledge
Claim: The QR protocol is zero knowledge.

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ):
(𝑠, 𝑏, 𝑧)

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random .𝑧 ∈ 𝑍∗
𝑁

3. compute .s = 𝑧2/𝑦𝑏

Exercise: The simulated transcript is identically distributed 
as the real transcript in the interaction (P,V).

4. output .(s, b, z)



What if V is NOT HONEST.

An Interactive Protocol (P,V) is honest-verifier perfect zero-
knowledge for a language if there exists a PPT 

simulator S such that for every , the following two 
distributions are identical:

𝐿 
𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉 ) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge for a 
language if for every PPT , there exists a (expected) 

poly time simulator S s.t. for every , the following 
two distributions are identical:

𝐿  𝑽 ∗

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF



NOW: (Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First pick a random s and 
“feed it to” .𝑉 ∗

2. Let .b = 𝑉 ∗(𝑠)
Now what???𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗):

(𝑠, 𝑏, 𝑧)



(Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero 
knowledge.

Simulator S works as follows:

1. First set  for a random z and b and feed s to 

.

𝑠 =
𝑧2

𝑦𝑏

𝑉 ∗
2. Let .b′ = 𝑉 ∗(𝑠)
3. If , output  and stop.  𝑏′ = 𝑏 (s, b, z)
4. Otherwise, go back to step 1 and repeat. (also called 
“rewinding”).



Simulator S works as follows:

1. First set  for a random z and feed s to .𝑠 =
𝑧2

𝑦𝑏
𝑉 ∗

2. Let .b′ = 𝑉 ∗(𝑠)
3. If , output  and stop.  𝑏′ = 𝑏 (s, b, z)
4. Otherwise, go back to step 1 and repeat. (also called 
“rewinding”).

Lemma:  
(1) S runs in expected polynomial-time.  
(2) When S outputs a view, it is identically distributed 

to the view of  in a real execution. 𝑉 ∗



What Made it Possible?

1. Each statement had multiple proofs of which the prover 
chooses one at random.

2. Each such proof is made of two parts: seeing either 
one on its own gives the verifier no knowledge; seeing 
both imply 100% correctness.

3. Verifier chooses to see either part, at random. 
The prover’s ability to provide either part on demand 
convinces the verifier. 


