
1

CIS 5560

Lecture 20
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW8 due tomorrow evening
• HW 9 out Wednesday evening

• Due Wednesday Apr 17 at 11:59PM on Gradescope

• Covers

• One-time signatures

• RSA-based signatures

2

Recap of last lecture

3

New primitive: Digital Signatures

4

Dan Boneh
5

Digital Signatures: Definition

Correctness: For all vk, sk, m: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms such that

• Key generation:
• Message signing:
• Signature verification:

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}

Dan Boneh

EUF-CMA for Signatures

6

Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)

Lamport (One-time) Signatures for arbitrary bits

Signing : 1.

 2.

m z := H(m)
σ = (x1,z1

, x2,z2
, …, xn,zn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming is CRH and is a OWF, no PPT
adv can produce a signature of given a signature of
a single .

H 𝑓
𝑚

𝑚′ ≠ 𝑚
Claim: Can forge signature on any message given the
signatures on (some) two messages.

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

7

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.  
	 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.  
	 Idea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

8

How to Fix Vanilla RSA
Start with any trapdoor permutation, e.g. RSA.

Gen(): Pick primes and let Pick relatively
prime to and let

1𝜆 (𝑃, 𝑄) 𝑁 = 𝑃𝑄 . 𝑒
𝜑(𝑁) 𝑑 = 𝑒−1 (mod 𝜑(𝑁)) .

Sign(): Output signature 𝗌𝗄, m 𝜎 = 𝑯(𝒎)𝑑 (mod 𝑁) .

Verify(): Check if 𝗏𝗄, m, σ 𝜎𝑒 = 𝑯(𝒎) (mod 𝑁) .

sk = and pk = (𝑁, 𝑑) (𝑁, 𝑒, 𝑯)

H is a random oracle.

Today’s lecture
• What is a proof?

• Interactive Proofs

• Zero-knowledge interactive proofs

•

10

Beyond Secure Communication

Alice Bob

x y

Much more than communicating securely.

• Complex Interactions: proofs, computations, games.

• Complex Adversaries: Alice or Bob, adaptively chosen.

• Complex Properties: Correctness, Privacy, Fairness.

• Many Parties: this class, MIT, the internet.

Classical Proofs

Prover writes down a string (proof); Verifier checks.

a

b

a2 + b2

Axiom 1
Axiom 2
Axiom 1⇒A

A⇒B
QED

Steve Cook Leonid Levin

Proofs

Prover Verifier

Claim/Theorem

proof

accept/
reject

Prover Verifier

Claim/Theorem

proof

accept/
reject

Efficiently Verifiable Proofs: 𝖭𝖯

Works hard Polynomial-time

Theorem: is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff

and are prime

N = PQ
P, Q

Prover Verifier

Claim/Theorem

proof

accept/
reject

Works hard Polynomial-time

Def: A language/decision procedure is simply a set

of strings. So, .

ℒ
ℒ ⊆ {0,1}∗

Efficiently Verifiable Proofs: 𝖭𝖯

Def: is an -language if there is a poly-time verifier where
• Completeness: True theorems have (short) proofs.

	 for all , there is a poly()-long witness 
	 (proof) s.t.

• Soundness: False theorems have no short proofs.
	 for all , there is no witness.  
 That is, for all polynomially long ,

ℒ 𝖭𝖯 𝑉

x ∈ ℒ |x |
w ∈ {0,1}* 𝑉(𝑥, 𝑤) = 1.

x ∉ ℒ
w 𝑉(𝑥, 𝑤) = 0.

Efficiently Verifiable Proofs: 𝖭𝖯

Prover Verifier

Claim/Theorem

proof

accept/
reject

Theorem: is a product of two prime numbersN

Prover
Verifier

Proof = (𝑷, 𝑸)

Accept iff

and are prime

N = PQ
P, Q

After interaction, the Verifier knows:

1) is a product of two primes. N

2) Also, the two factors of . N

Theorem: Graphs and are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N] → [N]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check

iff .

∀𝑖, 𝑗:
(π(i), π(j)) ∈ E1

(i, j) ∈ E0

Theorem: Graphs and are isomorphic. G0 G1

Prover
Verifier

Proof , π : [N] → [N]

1

2 5

3 4

6
7

8 9

10

1
2

3

4

5

9

6

8

10

7

the isomorphism

Check

iff .

∀𝑖, 𝑗:
(π(i), π(j)) ∈ E1

(i, j) ∈ E0

After interaction, Bob the Verifier knows:
1) and are isomorphic. 𝐺0 𝐺1

2) Also, the isomorphism.

Theorem: Boolean Formula is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment
(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1

After interaction, Bob the Verifier knows:
1) is satisfiableφ

2) Also, the satisfying assignment

Theorem: Boolean Formula is satisfiable φ

Prover
Verifier

Proof = Satisfying assignment

NP-Complete Problem:
Every one of the other problems can be reduced to it

(x0, …, xn)

ϕ(X1, …, XN) := (X1 ∨ X3 ∨ XN) ∧ ⋯ ∧ (X5 ∨ XN−5 ∨ X10)

Check φ(x1, …, xn) = 1

Is there any other way?

Zero Knowledge Proofs

Prover

“I will prove to you that I
could’ve sent you a proof  
if I felt like it.”

Zero Knowledge Proofs

Prover

“I will not give you the
isomorphism, but will prove to you
that I could have one.”

Two (Necessary) New Ingredients
1. Interaction: Rather than passively reading the proof, the
verifier engages in a conversation with the prover.

2. Randomness: The verifier is randomized and can make
a mistake with a (exponentially small) probability.

Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language ℒ

Probabilistic  
Polynomial-timeComp. Unbounded

𝑞1

𝑎2

𝑞2

…

Prover
Verifier

Claim/Theorem

𝑎1
accept/
reject

Interactive Proofs for a Language ℒ

𝑞1

𝑎2…

Def: is an -language if there is a unbounded P and
probabilistic poly-time verifier where
• Completeness: If , V always accepts.

• Soundness: If regardless of the cheating

prover strategy, V accepts with negligible probability.

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
x ∉ ℒ,

Interactive Proofs for a Language ℒ

Def: is an -language if there is a probabilistic
poly-time verifier where
• Completeness: If ,
	 	

• Soundness: If there is a negligible

function s.t. for every
	 	

ℒ 𝖨𝖯
𝑉

x ∈ ℒ
Pr[(P, 𝑉)(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = 1.

x ∉ ℒ,
negl 𝑷 ∗,

Pr[(𝑃∗, 𝑉)(𝑥) = 𝑎𝑐𝑐𝑒𝑝𝑡] = negl(𝜆) .

Interactive Proof for QR

𝑠 = 𝑟2 (mod 𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:

𝑧2 = 𝑠𝑦𝑏 (mod 𝑁)If b=1:
𝑧 = 𝑟𝑥

 .ℒ = {(𝑁, 𝑦):𝑦 is a quadratic residue mod 𝑁}

(𝑁, 𝑦) (𝑁, 𝑦)

Completeness

Claim: If then the verifier accepts the
proof with probability 1.

(𝑁, 𝑦) ∈ 𝐿,

𝑧2 = (𝑟𝑥𝑏)2 = 𝑟2(𝑥2)𝑏 = 𝑠𝑦
𝑏
 (mod 𝑁)

So, the verifier’s check passes and he accepts.

Proof:

Soundness

Claim: If then for every cheating prover

, the verifier accepts with probability at most 1/2.
(𝑁, 𝑦) ∉ 𝐿,

𝑃∗
Suppose the verifier accepts with probability > 1/2.Proof:

Then, there is some s.t. the prover produces 𝑠 ∈ 𝑍∗
𝑁

𝑧0 :𝑧2
0 = 𝑠 (mod 𝑁)

𝑧1 :𝑧2
1 = 𝑠𝑦 (mod 𝑁)

This means , which tells us

that .

 (𝑧1/𝑧0)2 = 𝑦 (mod 𝑁)
(𝑁, 𝑦) ∈ 𝐿

Interactive Proof for QR

𝑠𝑖 = 𝑟2
𝑖 (mod 𝑁)

𝑏𝑖 ← {0,1}

If =0: 𝑏𝑖
𝑧𝑖 = 𝑟𝑖

Check for all i:
𝑧2

𝑖 = 𝑠𝑖𝑦𝑏 (mod 𝑁)If =1:𝑏𝑖
𝑧𝑖 = 𝑥𝑟𝑖

 .ℒ = {(𝑁, 𝑦):𝑦 is a quadratic residue mod 𝑁}

(𝑁, 𝑦) (𝑁, 𝑦)

REPEAT sequentially times.𝜆

Soundness

Claim: If then for every cheating prover

, the verifier accepts with probability at most .

(𝑁, 𝑦) ∉ 𝐿,

𝑃∗ (
1
2

)
𝜆

Exercise.Proof:

This is Zero-Knowledge.

𝑠 = 𝑟2 (mod 𝑁)

𝑏 ← {0,1}

If b=0: 𝑧 = 𝑟 Check:

𝑧2 = 𝑠𝑦𝑏 (mod 𝑁)If b=1:
𝑧 = 𝑟𝑥

But what does that mean?

(𝑁, 𝑦) (𝑁, 𝑦)

How to Define Zero-Knowledge?

After the interaction, knows:𝑽
• The theorem is true; and

• A view of the interaction
 (= transcript + randomness of V)

 gives zero knowledge to :𝑷 𝑽
When the theorem is true, the view gives V
nothing that he couldn’t have obtained on
his own without interacting with P.

How to Define Zero-Knowledge?

 is zero-knowledge if can
generate his VIEW of the interaction all by
himself in probabilistic polynomial time.

(𝑃, 𝑉) 𝑉

How to Define Zero-Knowledge?

 is zero-knowledge if can
“simulate” his VIEW of the interaction all by
himself in probabilistic polynomial time.

(𝑃, 𝑉) 𝑉

The Simulation Paradigm

Coins =

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉):
Transcript = (𝑠, 𝑏, 𝑧),

𝑏

PPT “simulator” 𝑺
(𝑁, 𝑦)𝑠𝑖𝑚𝑆:

(𝑠, 𝑏, 𝑧)

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉):
(𝑠, 𝑏, 𝑧)

Zero Knowledge: Definition

An Interactive Protocol (P,V) is zero-knowledge
for a language if there exists a PPT algorithm
S (a simulator) such that for every , the
following two distributions are indistinguishable:

𝐿
𝒙 ∈ 𝑳

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Perfect Zero Knowledge: Definition

An Interactive Protocol (P,V) is perfect zero-
knowledge for a language if there exists a
PPT algorithm S (a simulator) such that for every

, the following two distributions are
identical:

𝐿

𝑥 ∈ 𝐿
1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Statistical Zero Knowledge: Definition

An Interactive Protocol (P,V) is statistical zero-
knowledge for a language if there exists a
PPT algorithm S (a simulator) such that for every

, the following two distributions are
statistically indistinguishable:

𝐿

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Computational Zero Knowledge: Definition

An Interactive Protocol (P,V) is computational
zero-knowledge for a language if there exists
a PPT algorithm S (a simulator) such that for
every , the following two distributions
are computationally indistinguishable:

𝐿

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉)
2. 𝑆(𝑥, 1𝜆)

(P,V) is a zero-knowledge interactive protocol if it
is complete, sound and zero-knowledge.

Zero Knowledge
Claim: The QR protocol is zero knowledge.

𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉):
(𝑠, 𝑏, 𝑧)

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random .𝑧 ∈ 𝑍∗
𝑁

3. compute .s = 𝑧2/𝑦𝑏

Exercise: The simulated transcript is identically distributed
as the real transcript in the interaction (P,V).

4. output .(s, b, z)

What if V is NOT HONEST.

An Interactive Protocol (P,V) is honest-verifier perfect zero-
knowledge for a language if there exists a PPT

simulator S such that for every , the following two
distributions are identical:

𝐿
𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉 (𝑃, 𝑉) 2. 𝑆(𝑥, 1𝜆)

An Interactive Protocol (P,V) is perfect zero-knowledge for a
language if for every PPT , there exists a (expected)

poly time simulator S s.t. for every , the following
two distributions are identical:

𝐿 𝑽 ∗

𝑥 ∈ 𝐿

1. 𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗) 2. 𝑆(𝑥, 1𝜆)

OLD DEF

REAL DEF

NOW: (Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:

1. First pick a random s and
“feed it to” .𝑉 ∗

2. Let .b = 𝑉 ∗(𝑠)
Now what???𝑣𝑖𝑒𝑤𝑉∗(𝑃, 𝑉 ∗):

(𝑠, 𝑏, 𝑧)

(Malicious Ver) Zero Knowledge
Theorem: The QR protocol is (malicious verifier) zero
knowledge.

Simulator S works as follows:

1. First set for a random z and b and feed s to

.

𝑠 =
𝑧2

𝑦𝑏

𝑉 ∗
2. Let .b′ = 𝑉 ∗(𝑠)
3. If , output and stop. 𝑏′ = 𝑏 (s, b, z)
4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Simulator S works as follows:

1. First set for a random z and feed s to .𝑠 =
𝑧2

𝑦𝑏
𝑉 ∗

2. Let .b′ = 𝑉 ∗(𝑠)
3. If , output and stop. 𝑏′ = 𝑏 (s, b, z)
4. Otherwise, go back to step 1 and repeat. (also called
“rewinding”).

Lemma:
(1) S runs in expected polynomial-time.
(2) When S outputs a view, it is identically distributed

to the view of in a real execution. 𝑉 ∗

What Made it Possible?

1. Each statement had multiple proofs of which the prover
chooses one at random.

2. Each such proof is made of two parts: seeing either
one on its own gives the verifier no knowledge; seeing
both imply 100% correctness.

3. Verifier chooses to see either part, at random.
The prover’s ability to provide either part on demand
convinces the verifier.

