# CIS 5560

## Cryptography Lecture 20

#### **Course website:**

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

# Announcements

- HW8 due tomorrow evening
- HW 9 out Wednesday evening
  - Due Wednesday Apr 17 at 11:59PM on Gradescope
  - Covers
    - One-time signatures
    - RSA-based signatures

# Recap of last lecture

# New primitive: Digital Signatures

## **Digital Signatures: Definition**

A triple of PPT algorithms (Gen, Sign, Verify) such that

- Key generation:  $Gen(1^n) \rightarrow (sk, pk)$
- Message signing:  $\mathsf{Sign}(\mathsf{sk},m) \to \sigma$
- Signature verification: Verify $(pk, m, \sigma) \rightarrow b \in \{0, 1\}$

**Correctness:** For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

## **EUF-CMA** for Signatures



6

## Lamport (One-time) Signatures for arbitrary bits

Secret Key sk:
 
$$\begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{n,0} \\ x_{1,1} & x_{1,1} & \cdots & x_{n,1} \end{pmatrix}$$

 Public Key pk:
  $\begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{n,1} \end{pmatrix}$ 
 where  $y_{i,b} = f(x_{i,b})$ .

 Signing min
 1  $z := H(m)$ 

Signing *m*:  
1. 
$$z := H(m)$$
  
2.  $\sigma = (x_{1,z_1}, x_{2,z_2}, ..., x_{n,z_n})$ 

Claim: Assuming *H* is CRH and *f* is a OWF, no PPT adv can produce a signature of <u>m</u> given a signature of a single  $\underline{m' \neq m}$ .

<u>Claim</u>: Can forge signature on any message given the signatures on (some) two messages.

# (Many-time) Signature Scheme

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature **Trees** 

Step 3. How to Shrink Alice's storage. Idea: *Pseudorandom Trees* 

Step 4. How to make Alice stateless. Idea: *Randomization* 

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: *PRFs.* 

## How to Fix Vanilla RSA

Start with any trapdoor permutation, e.g. RSA.

Gen(1<sup> $\lambda$ </sup>): Pick primes (*P*, *Q*) and let *N* = *PQ*. Pick *e* relatively prime to  $\varphi(N)$  and let  $d = e^{-1} \pmod{\varphi(N)}$ .

sk = (N, d) and pk = (N, e, H)

Sign(sk, m): Output signature  $\sigma = H(m)^d \pmod{N}$ .

Verify(vk,  $m, \sigma$ ): Check if  $\sigma^e = H(m) \pmod{N}$ .

H is a *random oracle*.

# Today's lecture

- What is a proof?
- Interactive Proofs
- *Zero-knowledge* interactive proofs
- ٠

## **Beyond Secure Communication**



#### Much more than communicating securely.

- Complex Interactions: proofs, computations, games.
- Complex Adversaries: Alice or Bob, adaptively chosen.
- Complex Properties: Correctness, Privacy, Fairness.
- Many Parties: this class, MIT, the internet.

## **Classical Proofs**



#### Prover writes down a string (proof); Verifier checks.



## Proofs



## Efficiently Verifiable Proofs: NP



#### Theorem: N is a product of two prime numbers



 $\mathsf{Proof} = (\boldsymbol{P}, \boldsymbol{Q})$ Verifier

Prover

Accept iff N = PQand P, Q are prime

## Efficiently Verifiable Proofs: NP



**<u>Def</u>: A language/decision procedure**  $\mathscr{L}$  is simply a set of strings. So,  $\mathscr{L} \subseteq \{0,1\}^*$ .

## Efficiently Verifiable Proofs: NP



**<u>Def</u>**:  $\underline{\mathscr{L}}$  is an <u>NP</u>-language if there is a **poly-time** verifier  $\underline{V}$  where

- Completeness: True theorems have (short) proofs.
   for all x ∈ L, there is a poly(|x|)-long witness
   (proof) w ∈ {0,1}\* s.t. V(x, w) = 1.
- Soundness: False theorems have no short proofs.
   for all *x* ∉ ℒ, there is no witness.
   That is, for all polynomially long *w*, *V*(*x*, *w*) = 0.

#### Theorem: N is a product of two prime numbers

 $\mathsf{Proof} = (P, Q)$ 



Prover



Accept iff N = PQand P, Q are prime

After interaction, the Verifier knows:

1) N is a product of two primes.

2) Also, the two factors of N.





2) Also, the isomorphism.

#### Theorem: Boolean Formula $\phi$ is satisfiable

$$\phi(X_1, \dots, X_N) := (X_1 \lor X_3 \lor X_N) \land \dots \land (X_5 \lor X_{N-5} \lor X_{10})$$



#### After interaction, Bob the Verifier knows:

- 1)  $\varphi$  is satisfiable
- 2) Also, the satisfying assignment

#### Theorem: Boolean Formula $\phi$ is satisfiable

$$\phi(X_1, \dots, X_N) := (X_1 \lor X_3 \lor X_N) \land \dots \land (X_5 \lor X_{N-5} \lor X_{10})$$



#### *NP-Complete* Problem:

Every one of the other problems can be reduced to it

Is there any other way?

## Zero Knowledge Proofs

"I will prove to you that I could've sent you a proof if I felt like it."





Micali

Goldwasser

Rackoff

## Zero Knowledge Proofs



"I will not give you the isomorphism, but will prove to you that I could have one."

**Prover** 



Micali Goldwasser

## Two (Necessary) New Ingredients

1. **Interaction:** Rather than passively reading the proof, the verifier engages in a conversation with the prover.

2. **Randomness:** The verifier is randomized and can make a mistake with a (exponentially small) probability.



## Interactive Proofs for a Language $\mathscr{L}$



**Comp. Unbounded** 

**Probabilistic** Polynomial-time

## Interactive Proofs for a Language $\mathscr{S}$



**<u>Def</u>:**  $\mathcal{L}$  is an <u>IP</u>-language if there is a unbounded P and **probabilistic poly-time** verifier  $\underline{V}$  where

- **Completeness**: If  $x \in \mathcal{L}$ , V always accepts.
- Soundness: If  $x \notin \mathcal{L}$ , regardless of the cheating prover strategy, V accepts with negligible probability.

## Interactive Proofs for a Language $\mathscr{L}$



**<u>Def</u>:**  $\underline{\mathscr{L}}$  is an <u>IP</u>-language if there is a **probabilistic poly-time** verifier  $\underline{V}$  where

- Completeness: If  $x \in \mathcal{L}$ ,  $\Pr[(P, V)(x) = accept] = 1.$
- Soundness: If  $x \notin \mathscr{L}$ , there is a negligible function negl s.t. for every  $P^*$ ,  $\Pr[(P^*, V)(x) = accept] = negl(\lambda)$ .

### **Interactive Proof for QR**



### **Completeness**

**Claim:** If  $(N, y) \in L$ , then the verifier accepts the proof with probability 1. **Proof:** 

$$z^{2} = (rx^{b})^{2} = r^{2}(x^{2})^{b} = sy^{b} \pmod{N}$$

So, the verifier's check passes and he accepts.

### **Soundness**

**Claim:** If  $(N, y) \notin L$ , then for every cheating prover  $P^*$ , the verifier accepts with probability at most 1/2. **Proof:** Suppose the verifier accepts with probability > 1/2.

Then, there is some 
$$S \in Z_N^*$$
 s.t. the prover produces  
 $z_0: z_0^2 = s \pmod{N}$   
 $z_1: z_1^2 = sy \pmod{N}$ 

This means 
$$(z_1/z_0)^2 = y \pmod{N}$$
, which tells us that  $(N, y) \in L$ .

## **Interactive Proof for QR**



### **Soundness**

Claim: If  $(N, y) \notin L$ , then for every cheating prover **Proof** he **Ever** is accepts with probability at most  $(\frac{1}{2})^{\lambda}$ .

## This is Zero-Knowledge.

But what does that mean?

 $s = r^2 \pmod{N}$ (N, y)(N, y) $b \leftarrow \{0,1\}$ If b=0: z = rCheck:  $z^2 = sy^b \pmod{N}$ If b=1: z = rx

#### **How to Define Zero-Knowledge?**

## After the interaction, *V*knows:

- The theorem is true; and
- A view of the interaction
   (= transcript + randomness of V)

## **P**gives zero knowledge to **V**:

When the theorem is true, the view gives V nothing that he couldn't have obtained on his own without interacting with P.

## **How to Define Zero-Knowledge?**

(P, V) is zero-knowledge if V can generate his VIEW of the interaction all by himself in probabilistic polynomial time.

## **How to Define Zero-Knowledge?**

(P,V) is zero-knowledge if V can "simulate" his VIEW of the interaction all by himself in probabilistic polynomial time.

### **The Simulation Paradigm**







## **Zero Knowledge: Definition**

An Interactive Protocol (P,V) is zero-knowledge for a language L if there exists a PPT algorithm S (a simulator) such that for every  $x \in L$ , the following two distributions are indistinguishable:

1. 
$$view_V(P, V)$$
  
2.  $S(x, 1^{\lambda})$ 

### **Perfect Zero Knowledge: Definition**

An Interactive Protocol (P,V) is perfect zero**knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every  $x \in L$ , the following two distributions are identical: 1.  $view_V(P, V)$ 2.  $S(x, 1^{\lambda})$ 

### **Statistical Zero Knowledge: Definition**

An Interactive Protocol (P,V) is statistical zero**knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every  $x \in L$ , the following two distributions are statistically indistinguishable: 1.  $view_V(P, V)$ 

2.  $S(x, 1^{\lambda})$ 

#### **Computational Zero Knowledge: Definition**

An Interactive Protocol (P,V) is computational **zero-knowledge** for a language L if there exists a PPT algorithm S (a simulator) such that for every  $x \in L$ , the following two distributions are computationally indistinguishable: 1.  $view_V(P, V)$ 2.  $S(x, 1^{\lambda})$ 

## Zero Knowledge

**Claim:** The QR protocol is zero knowledge.



$$view_V(P,V):$$
  
 $(s,b,z)$ 

Simulator S works as follows:

1. First pick a random bit b.

2. pick a random 
$$z \in Z_N^*$$
.  
3. compute  $s = z^2/y^b$ .  
4. output (s, b, z).

**Exercise:** The simulated transcript is identically distributed as the real transcript in the interaction (P,V).

## What if V is NOT HONEST.

OLD DEF An Interactive Protocol (P,V) is honest-verifier perfect zeroknowledge for a language L if there exists a PPT simulator S such that for every  $x \in L$ , the following two distributions are identical:  $view_V(P,V)$  2.  $S(x,1^{\lambda})$ 

An Interactive Protocol (P,V) is perfect zero-knowledge for a language L if for every PPT  $V^*$ , there exists a (expected) poly time simulator S s.t. for every  $x \in L$ , the following two distributions are identical: 1.  $view_{V^*}(P, V^*)$  2.  $S(x, 1^{\lambda})$ 

## NOW: (Malicious Ver) Zero Knowledge

**Theorem:** The QR protocol is (malicious verifier) zero knowledge.



$$view_{V^*}(P, V^*):$$
  
(s, b, z)

#### Simulator S works as follows:

1. First pick a random s and "feed it to"  $V^st$ .

2. Let 
$$b = V^*(s)$$
.

Now what???

## (Malicious Ver) Zero Knowledge

**Theorem:** The QR protocol is (malicious verifier) zero knowledge.

Simulator S works as follows:

1. First set  $S = \frac{z^2}{a}$  for a random z and b and feed s to 2. Let  $b' = V^* (b')$ .  $V^*$ 3. If b' = b, output (S, b, Z) and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

Simulator S works as follows:

1. First set 
$$s = \frac{z^2}{\sqrt{b^k}}$$
 for a random z and feed s to  $V^*$ .  
2. Let  $b' = V^* \sqrt{b^k}$ .

3. If 
$$b' = b$$
, output  $(s, b, z)$  and stop.

4. Otherwise, go back to step 1 and repeat. (also called "rewinding").

#### Lemma:

- (1) S runs in expected polynomial-time.
- (2) When S outputs a view, it is identically distributed to the view of  $V^{*}$  in a real execution.

## What Made it Possible?

1. Each statement had multiple proofs of which the prover chooses one at random.

2. Each such proof is made of two parts: seeing either one on its own gives the verifier no knowledge; seeing both imply 100% correctness.

3. Verifier chooses to see either part, at random. The prover's ability to provide either part on demand convinces the verifier.