#### **CIS 5560**

### Cryptography Lecture 18

**Course website:** 

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

# Announcements

- HW 8 out Wednesday evening
  - Due Wednesday Apr 10 at 11:59PM on Gradescope
  - Covers
    - RSA
    - little bit of IND-CCA PKE

# Recap of last lecture

### **Symmetric-key Message Authentication**



We want Alice to generate a tag for the message *m* which is hard to generate without the secret key *k*.

### **Public-key Message Authentication?**



We want Alice to generate a signature for the message *m* which is **hard to forge** without the secret/signing key *sk*.

### **Does PKE not solve this?**



Anybody can encrypt, and no way for recipient to check.

# New primitive: Digital Signatures

### **Digital Signatures: Definition**

A triple of PPT algorithms (Gen, Sign, Verify) such that

- Key generation:  $Gen(1^n) \rightarrow (sk, pk)$
- Message signing:  $\operatorname{Sign}(\operatorname{sk}, m) \to \sigma$
- Signature verification:  $Verify(pk, m, \sigma) \rightarrow b \in \{0, 1\}$

**Correctness:** For all vk, sk, m: Verify(pk, m, Sign(sk, m)) = 1

#### **EUF-CMA** for Signatures



9

### **Strong EUF-CMA for Signatures**



# Digital Signatures vs. MACs

**Signatures** 

*n* users require *n* key-pairs

Publicly Verifiable

Transferable

#### **Provides Non-Repudiation**

(is this a good thing or a bad thing?)

*n* users require  $n^2$  keys

MACs

**Privately Verifiable** 

Not Transferable

Does not provide Non-Rep.

Let (Gen, Sign,V) be a signature scheme.

Suppose an attacker is able to find  $m_0 \neq m_1$  such that

V(pk,  $m_0, \sigma$ ) = V(pk,  $m_1, \sigma$ ) for all  $\sigma$  and keys (pk, sk)  $\leftarrow$  Gen

Can this signature be secure?

- $\bigcirc$  Yes, the attacker cannot forge a signature for either m<sub>0</sub> or m<sub>1</sub>
- No, signatures can be forged using a chosen msg attack
- $\bigcirc$  It depends on the details of the scheme

Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m="**pay Bob 100\$**" properly signed by Alice, i.e. Verify(pk,m,sig) = 1

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m
 and therefore the Bank should give Bob 100\$ from Alice's account

Bob could have stolen Alice's signing key and therefore

- $\bigcirc$  the bank should not honor the statement
- $\bigcirc$  What a mess: the bank will need to refer the issue to the courts

# Applications

# Applications

#### **Code signing**:

- Software vendor signs code
- Clients have vendor's pk. Install software if signature verifies.



### More generally:

One-time authenticated channel (non-private, one-directional)

⇒ many-time authenticated channel

Initial software install is authenticated, but not private



# Important application: Certificates

Problem: browser needs server's public-key to setup a session key Solution: server asks trusted 3<sup>rd</sup> party (CA) to sign its public-key pk



# Certificates: example

#### Important fields:

| Serial Number<br>Version          | 5814744488373890497 <b>&lt;</b>                              |
|-----------------------------------|--------------------------------------------------------------|
| Signature Algorithm<br>Parameters | SHA–1 with RSA Encryption ( 1.2.840.113549.1.1.5 ) none      |
| Not Valid Before                  | Wednesday, July 31, 2013 4:59:24 AM Pacific<br>Daylight Time |
| Not Valid After                   | Thursday, July 31, 2014 4:59:24 AM Pacific Daylight<br>Time  |
| Public Key Info                   |                                                              |
| Algorithm                         | Elliptic Curve Public Key ( 1.2.840.10045.2.1 )              |
| Parameters                        | Elliptic Curve secp256r1 ( 1.2.840.10045.3.1.7 )             |
| Public Key                        | 65 bytes : 04 71 6C DD E0 0A C9 76                           |
| Key Size                          | 256 bits                                                     |
| Key Usage                         | Encrypt, Verify, Derive                                      |
| Signature                         | 256 bytes : 8A 38 FE D6 F5 E7 F6 59                          |

Equifax Secure Certificate Authority
 GeoTrust Global CA
 Google Internet Authority G2
 Gimmail.google.com



#### mail.google.com

Issued by: Google Internet Authority G2 Expires: Thursday, July 31, 2014 4:59:24 AM Pacific Daylight Time

This certificate is valid

#### Details



What entity generates the CA's secret key  $sk_{CA}$ ?

- the browser
- 🔾 Gmail
- the CA
- the NSA

### Signing email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com but in reality, mail is coming from domain badguy.com → Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail



# When to use signatures

Generally speaking:

- If one party signs and <u>one</u> party verifies: use a MAC
  - Often requires interaction to generate a shared key
  - Recipient can modify the data and re-sign it before passing the data to a 3<sup>rd</sup> party

- If one party signs and **many** parties verify: **use a signature** 
  - Recipients cannot modify received data before passing data to a 3<sup>rd</sup> party (non-repudiation)

# Constructions

### Simpler Goal: EUF-CMA for 1-time Signatures



23

## Lamport (One-time) Signatures from OWFs

Signing Key sk: 
$$\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$$
  
Public Key pk:  $\begin{pmatrix} y_0 = f(x_0) \\ y_1 = f(x_1) \end{pmatrix}$ 

Signing a bit *b*: The signature is  $\sigma = x_b$ 

Verifying  $(b, \sigma)$ : Check if  $f(\sigma) = y_b$ 

**<u>Claim</u>**: Assuming  $\underline{f}$  is a OWF, no PPT adversary can produce a signature of  $\underline{b}$  given a signature of  $\underline{b}$ .

#### Lamport (One-time) Signatures for n bits

Secret Key sk:
$$\begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{n,0} \\ x_{1,1} & x_{1,1} & \cdots & x_{n,1} \end{pmatrix}$$
Public Key pk: $\begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{n,1} \end{pmatrix}$  where  $y_{i,b} = f(x_{i,b})$ .

Signing 
$$m = (m_1, ..., m_n)$$
:  $\sigma = (x_{1,m_1}, x_{2,m_2}, ..., x_{n,m_n})$ 

<u>Claim</u>: Assuming <u>f</u> is a OWF, no PPT adv can produce a signature of <u>m</u> given a signature of a single  $\underline{m' \neq m}$ .

<u>Claim</u>: Can forge signature on any message given the signatures on (some) two messages.

### Lamport (One-time) Signatures for arbitrary bits

Secret Key sk:
 
$$\begin{pmatrix} x_{1,0} & x_{2,0} & \cdots & x_{n,0} \\ x_{1,1} & x_{1,1} & \cdots & x_{n,1} \end{pmatrix}$$

 Public Key pk:
  $\begin{pmatrix} y_{1,0} & y_{2,0} & \cdots & y_{n,0} \\ y_{1,1} & y_{2,1} & \cdots & y_{n,1} \end{pmatrix}$ 
 where  $y_{i,b} = f(x_{i,b})$ .

 Signing m:
 1  $z := H(m)$ 

Signing *m*:  
1. 
$$z := H(m)$$
  
2.  $\sigma = (z_{1,m_1}, z_{2,m_2}, ..., z_{n,m_n})$ 

Claim: Assuming *H* is CRH and *f* is a OWF, no PPT adv can produce a signature of <u>*m*</u> given a signature of a single  $\underline{m' \neq m}$ .

<u>Claim</u>: Can forge signature on any message given the signatures on (some) two messages.

#### **Constructing a Signature Scheme**

#### Step 0. Still one-time, but arbitrarily long messages.

Step 1. Many-time: Stateful, Growing Signatures.

Step 2. How to Shrink the signatures.

Step 3. How to Shrink Alice's storage.

Step 4. How to make Alice stateless.

Step 5 (*optional*). How to make Alice stateless and deterministic.

## So far, only one-time security...

### Constructing a Signature Scheme

**Theorem** [Naor-Yung'89, Rompel'90] (EUF-CMA-secure) Signature schemes exist assuming that <u>one-way functions</u> exist.

**TODAY:** (EUF-CMA-secure) Signature schemes exist assuming that <u>collision-resistant hash functions</u> exist.

#### (Many-time) Signature Scheme In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees* 

Step 3. How to Shrink Alice's storage. Idea: *Pseudorandom Trees* 

Step 4. How to make Alice stateless. Idea: *Randomization* 

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: *PRFs*.

#### Idea: Signature Chains.

- Alice starts with a secret signing Key  $sk_0$
- When signing a message  $m_1$ :

Generate a new pair  $(sk_1, pk_1)$ 

Produce signature  $\sigma_1 \leftarrow \text{Sign}(\text{sk}_0, m_1 || \text{pk}_1)$ 

Output  $pk_1 || \sigma_1$ .

Remember  $pk_1 || m_1 || \sigma_1$  as well as  $sk_1$ .

To verify a signature  $pk_1 || \sigma_1$  for message  $m_1$ : Run Verify $(pk_0, pk_1 || m_1, \sigma_1) = 1$ 

#### Idea: Signature Chains.

- Alice starts with a secret signing Key  $sk_0$
- When signing a message  $m_1$ :
  - Generate a new pair (sk<sub>1</sub>, pk<sub>1</sub>)
  - Produce signature  $\sigma_1 \leftarrow \text{Sign}(\text{sk}_0, m_1 || \text{pk}_1)$
  - Output  $pk_1 || \sigma_1$ .

Remember  $pk_1 || m_1 || \sigma_1$  as well as  $sk_1$ .

$$\begin{array}{cc} \sigma_1 & {}^{m_1} \\ \mathsf{pk}_0 & \longrightarrow & \mathsf{pk}_1 \end{array}$$

#### Idea: Signature Chains.

Alice starts with a secret signing Key  $sk_0$ 

When signing the next message  $m_2$ 

Generate a new pair  $(sk_2, pk_2)$ Produce signature  $\sigma_2 \leftarrow Sign(sk_1, m_2 || pk_2)$ Output ???





#### Idea: Signature Chains.

Alice starts with a secret signing Key  $sk_0$ 

When signing the next message  $m_2$ 

Generate a new pair  $(sk_2, pk_2)$ Produce signature  $\sigma_2 \leftarrow \text{Sign}(sk_1, m_2 || pk_2)$ Output  $pk_2 || \sigma_2 ??$ 





#### Idea: Signature Chains.

Alice starts with a secret signing Key  $sk_0$ 

When signing the next message  $m_2$ 

Generate a new pair  $(sk_2, pk_2)$ Produce signature  $\sigma_2 \leftarrow \text{Sign}(sk_1, m_2 || pk_2)$ Output  $pk_1 || pk_2 || \sigma_2$ ?





#### Idea: Signature Chains.

Alice starts with a secret signing Key  $sk_0$ 

When signing the next message  $m_2$ 

2 SK<sub>0</sub>

Produce signature  $\sigma_2 \leftarrow \text{Sign}(\text{sk}_1, m_2 || \text{pk}_2)$ 

Output  $(pk_1 | | m_1 | | \sigma_1) | | pk_2 | | \sigma_2$ 

Generate a new pair  $(sk_2, pk_2)$ 

(additionally) remember  $pk_2 ||m_2||\sigma_2$  as well as  $sk_2$ .



# **Step 1: Stateful Many-time Signatures**

#### Idea: Signature Chains.

Two major problems:

1. Alice is *stateful*: Alice needs to remember a whole lot of things, O(T) information after T steps.

2. The signatures grow: Length of the signature of the T-th message is O(T).



## (Many-time) Signature Scheme In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees* 



 $VK_{\epsilon}$ 



Alice (the *stateful* signer) computes many (VK, SK) pairs and arranges them in a tree of depth = sec. param.  $\lambda$ 



Use  $VK_{000}$  to sign  $m_0$ . "Authenticate"  $VK_{000}$  using the "signature path".







Signature of the first message  $m_0$ : (Authentication path for  $VK_{000}$ ,  $\tau_0 \leftarrow \text{Sign}(SK_{000}, m_0)$ )



Signature of the second message  $m_1$ : (Authentication path for  $VK_{001}$ ,

 $\boldsymbol{\tau_0} \leftarrow \operatorname{Sign}(SK_{001}, m_1)$ 



46

Signature of the third message  $m_2$ : (Authentication path for  $VK_{010}$ ,

 $\boldsymbol{\tau_2} \leftarrow \operatorname{Sign}(SK_{010}, m_2)$ 







## (Many-time) Signature Scheme In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees* 

Step 3. How to Shrink Alice's storage. Idea: *Pseudorandom Trees* 

## **Step 3.** Pseudorandom Signature Trees.



**Tree of pseudorandom values:**  
The signing key is a PRF key 
$$K$$
.  
Populate the nodes with  $r_x = PRF(K, x)$ .  
Use  $r_x$  to derive the keys  $x = VRF(K, x)$ .  
 $(VK_x, SK_x) \leftarrow Gen(1^{\lambda}; r_x)$ .



## **Tree of pseudorandom values:** The signing key is a PRF key K. Populate the nodes with $r_x = PRF(K, x)$ . Use $r_x$ to derive the keys x = VRF(K, x). $(VK_x, SK_x) \leftarrow Gen(1^{\lambda}; r_x)$ .





## (Many-time) Signature Scheme In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees* 

Step 3. How to Shrink Alice's storage. Idea: *Pseudorandom Trees* 

Step 4. How to make Alice stateless. Idea: *Randomization* 

## **Step 4.** Statelessness via Randomization



Signature of a message m: Pick a random leaf r. Use  $VK_r$  to sign m.  $\sigma_r \leftarrow \operatorname{Sign}(SK_r, m)$ Output  $(r, \sigma_r, authentication path for <math>VK_r)$ 

56

## Step 4. Statelessness via Randomization



## Step 4. Statelessness via Randomization



#### Key Idea:

If the signer produces q signatures, the probability she picks the same leaf twice is  $\leq q^2/2^{\lambda}$ .

## (Many-time) Signature Scheme In four+ steps

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

Step 2. How to Shrink the signatures. Idea: Signature *Trees* 

Step 3. How to Shrink Alice's storage. Idea: *Pseudorandom Trees* 

Step 4. How to make Alice stateless. Idea: *Randomization* 

Step 5 (*optional*). How to make Alice stateless and deterministic. Idea: *PRFs*.



#### Key Idea:

Generate r pseudo-randomly. Have another PRF key K' and let r = PRF(I', m)

## That's it for the construction.