
1

CIS 5560

Lecture 18
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 8 out Wednesday evening

• Due Wednesday Apr 10 at 11:59PM on Gradescope

• Covers

• RSA

• little bit of IND-CCA PKE

2

Recap of last lecture

3

Symmetric-key Message Authentication

4

Alice Bob

m

 k k
Can also alter/
inject more
messages!

(𝑚, 𝑡) or (𝑚, 𝑡) ⊥

We want Alice to generate a tag for the message m
which is hard to generate without the secret key k.

Public-key Message Authentication?

5

Alice Bob

m

 𝗌𝗄 𝗉𝗄
Can also alter/
inject more
messages!

(m, σ) or (m, σ) ⊥

We want Alice to generate a signature for the message m
which is hard to forge without the secret/signing key sk.

Does PKE not solve this?

6

Alice Bob

m
 𝖤𝗇𝖼(𝗉𝗄, m)

Anybody can encrypt, and no
way for recipient to check.

 𝖤𝗇𝖼(𝗉𝗄, m′)

Can toggle
between m
and m’

 𝗌𝗄 𝗉𝗄
How can
Bob check?

New primitive: Digital Signatures

7

Dan Boneh
8

Digital Signatures: Definition

Correctness: For all vk, sk, m: 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, 𝖲𝗂𝗀𝗇(𝗌𝗄, m)) = 1

A triple of PPT algorithms such that

• Key generation:
• Message signing:
• Signature verification:

(𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇, 𝖵𝖾𝗋𝗂𝖿𝗒)

𝖦𝖾𝗇(1n) → (𝗌𝗄, 𝗉𝗄)
𝖲𝗂𝗀𝗇(𝗌𝗄, m) → σ

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m, σ) → b ∈ {0,1}

Dan Boneh

EUF-CMA for Signatures

9

Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
m⋆ ∉ {mi}

 and
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)

Dan Boneh

Strong EUF-CMA for Signatures

10

Challenger Adversary𝗉𝗄

mi

σi

(m⋆, σ⋆)

Pr
(m⋆, σ⋆) ∉ {(mi, σi)}

 and
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1

= 𝗇𝖾𝗀𝗅(λ)

Digital Signatures vs. MACs

Publicly Verifiable

 users require key-pairs n 𝑛

Privately Verifiable

Signatures MACs

 users require keysn 𝑛2

Transferable Not Transferable

Provides Non-Repudiation Does not provide Non-Rep.
(is this a good thing or a bad thing?)

Let (Gen, Sign,V) be a signature scheme.

Suppose an attacker is able to find m0 ≠ m1 such that

 V(pk, m0, σ) = V(pk, m1, σ) for all σ and keys (pk, sk) ← Gen

Can this signature be secure?

Yes, the attacker cannot forge a signature for either m0 or m1

No, signatures can be forged using a chosen msg attack
It depends on the details of the scheme

Alice generates a (pk,sk) and gives pk to her bank.

Later Bob shows the bank a message m=“pay Bob 100$”
properly signed by Alice, i.e. Verify(pk,m,sig) = 1

Alice says she never signed m. Is Alice lying?

Alice is lying: existential unforgeability means Alice signed m 
and therefore the Bank should give Bob 100$ from Alice’s account

Bob could have stolen Alice’s signing key and therefore 
the bank should not honor the statement

What a mess: the bank will need to refer the issue to the courts

Applications

14

Dan Boneh

Applications

Code signing:

• Software vendor signs code

• Clients have vendor’s pk. Install software if signature verifies.

software vendor many clients

pk
initial software install (pk)

[software udate #1 , sig]

[software udate #2 , sig]

sk

Dan Boneh

More generally:
One-time authenticated channel (non-private, one-directional)
⟹ many-time authenticated channel

Initial software install is authenticated, but not private

Sender Recipients

one-time authenticated channel(pk, sk) ← Gen
pk

pk

m1 sig1

m2 sig2

⋮

sig1← S(sk, m1)

sig2← S(sk, m2)

eavesdrop, but not modify

Dan Boneh

Important application: Certificates
Problem: browser needs server’s public-key to setup a session key

Solution: server asks trusted 3rd party (CA) to sign its public-key pk

Certificate
Authority (CA)pk and

proof “I am Gmail”

browser

skCA

check
proofSign Cert using skCA :

pk is key
for Gmailpk is key

for Gmail

choose
 (pk, sk)

Gmail.com

pkCA

verify
cert

Server uses Cert for an extended period (e.g. one year)

pkCA

signing key

verification key

CA
sigCA

sig

Dan Boneh

Certificates: example
Important fields:

What entity generates the CA’s secret key skCA ?

the browser

the NSA

Gmail
the CA

Dan Boneh

Signing email: DKIM (domain key identified mail)

Problem: bad email claiming to be from someuser@gmail.com
	 but in reality, mail is coming from domain badguy.com
⇒ Incorrectly makes gmail.com look like a bad source of email

Solution: gmail.com (and other sites) sign every outgoing mail

Gmail
user

Gmail.com

signing key

email

Recipients

DNS
query

Gmail pk
sig

From: bob@gmail.com

body
body

verify sig

badguy.com ??

Dan Boneh

When to use signatures
Generally speaking:

• If one party signs and one party verifies: use a MAC

– Often requires interaction to generate a shared key

– Recipient can modify the data and re-sign it before  

passing the data to a 3rd party

• If one party signs and many parties verify: use a signature
– Recipients cannot modify received data before  

passing data to a 3rd party (non-repudiation)

Constructions

22

Dan Boneh

Simpler Goal: EUF-CMA for 1-time Signatures

23

Challenger Adversary𝗉𝗄

m1

σ1

(m⋆, σ⋆)

Pr
m⋆ ≠ m1
 and

𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, m⋆, σ⋆) = 1
= 𝗇𝖾𝗀𝗅(λ)

Lamport (One-time) Signatures from OWFs

Signing Key : 𝗌𝗄 (x0
x1)

Public Key : 𝗉𝗄 (y0 = f (x0)
y1 = f (x1))

Signing a bit : The signature is b 𝜎 = 𝑥𝑏

Verifying : Check if (b, σ) 𝑓(𝜎) = 𝑦𝑏

Claim: Assuming is a OWF, no PPT adversary can

produce a signature of given a signature of .

𝑓
�̄� 𝑏

24

Lamport (One-time) Signatures for bitsn

Signing : m = (m1, …, mn) σ = (x1,m1
, x2,m2

, …, xn,mn
)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming is a OWF, no PPT adv can produce
a signature of given a signature of a single .

𝑓
𝑚 𝑚′ ≠ 𝑚

Claim: Can forge signature on any message given the
signatures on (some) two messages.

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

25

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

Lamport (One-time) Signatures for arbitrary bits

Signing : 1.

 2.

m z := H(m)
σ = (z1,m1

, z2,m2
, …, zn,mn

)

Public Key :𝗉𝗄 where . yi,b = f (xi,b)

Claim: Assuming is CRH and is a OWF, no PPT
adv can produce a signature of given a signature of
a single .

H 𝑓
𝑚

𝑚′ ≠ 𝑚
Claim: Can forge signature on any message given the
signatures on (some) two messages.

(y1,0 y2,0 … yn,0
y1,1 y2,1 … yn,1)

26

Secret Key :𝗌𝗄 (x1,0 x2,0 … xn,0
x1,1 x1,1 … xn,1)

Constructing a Signature Scheme

Step 2. How to Shrink the signatures.

Step 3. How to Shrink Alice’s storage.

Step 4. How to make Alice stateless.

Step 5 (optional). How to make Alice stateless and
deterministic.

Step 1. Many-time: Stateful, Growing Signatures.

Step 0. Still one-time, but arbitrarily long messages.

27

So far, only one-time security…

28

Constructing a Signature Scheme

Theorem [Naor-Yung’89, Rompel’90]  
(EUF-CMA-secure) Signature schemes exist assuming
that one-way functions exist.

TODAY: 
(EUF-CMA-secure) Signature schemes exist assuming
that collision-resistant hash functions exist.

29

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.
 Idea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

30

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message
 Generate a new pair
 Produce signature
 Output .
 Remember as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1

To verify a signature for message
 Run

𝗉𝗄1 | |σ1 𝑚1:
𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄0, 𝗉𝗄1 | |m1, σ1) = 1

31

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing a message
 Generate a new pair
 Produce signature
 Output .
 Remember as well as .

𝑚1:
(𝗌𝗄1, 𝗉𝗄1)

σ1 ← 𝖲𝗂𝗀𝗇(𝗌𝗄0, m1 | |𝗉𝗄1)
𝗉𝗄1 | |σ1

𝗉𝗄1 | |m1 | |σ1 𝗌𝗄1

32

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message
 Generate a new pair
 Produce signature
 Output ???

m2

(𝗌𝗄2, 𝗉𝗄2)
σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)

Alice 𝗉𝗄0

33

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message
 Generate a new pair
 Produce signature
 Output ??

m2

(𝗌𝗄2, 𝗉𝗄2)
σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)

𝗉𝗄2 | |σ2

Alice 𝗉𝗄0

34

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message
 Generate a new pair
 Produce signature
 Output ??

m2

(𝗌𝗄2, 𝗉𝗄2)
σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)

𝗉𝗄1 | |𝗉𝗄2 | |σ2

Alice 𝗉𝗄0

35

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1

Step 1: Stateful Many-time Signatures
Idea: Signature Chains.

Alice starts with a secret signing Key 𝗌𝗄0

When signing the next message
 Generate a new pair
 Produce signature
 Output
 (additionally) remember as well as .

m2

(𝗌𝗄2, 𝗉𝗄2)
σ2 ← 𝖲𝗂𝗀𝗇(𝗌𝗄1, m2 | |𝗉𝗄2)

(𝗉𝗄1 | |m1 | |σ1) | |𝗉𝗄2 | |σ2

𝗉𝗄2 | |m2 | |σ2 𝗌𝗄2

Alice 𝗉𝗄0

36

𝗉𝗄0 𝗉𝗄1

𝑚1𝜎1
𝗉𝗄2

m2σ2

Idea: Signature Chains.

Two major problems:

1. Alice is stateful: Alice needs to remember a whole lot of
things, information after steps.𝑂(𝑇) 𝑇

𝑉𝐾0 𝑉𝐾1
𝜎1

𝑉𝐾2
𝜎2

𝑉𝐾3
𝜎3 𝑉𝐾4

𝜎4 …

2. The signatures grow: Length of the signature of the -th

message is .

𝑇
𝑂(𝑇)

𝑚1𝜏1 𝑚2𝜏2 𝑚3𝜏3 𝑚4𝜏4

Step 1: Stateful Many-time Signatures

37

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

38

Step 2. How to Shrink the signatures.

𝑉𝐾𝜖

Alice V𝐾𝜖

39

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

Alice (the stateful signer) computes many pairs

and arranges them in a tree of depth = sec. param.

(𝑉𝐾, 𝑆𝐾)
𝜆

Alice V𝐾𝜖

40

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

Signature of the first message 𝒎𝟎:

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

Use to sign . 𝑉𝐾000 𝑚0

𝑚0

𝜏0

“Authenticate” using the “signature path”. 𝑉𝐾000
41

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

Signature of the first message 𝒎𝟎:

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

(,

,

𝝈𝝐 ← Sign(𝑆𝐾𝜖, 𝑉𝐾0 | |𝑉𝐾1)
𝝈𝟎 ← Sign(𝑆𝐾0, 𝑉𝐾00 | |𝑉𝐾01) ,

)
𝝈𝟎𝟎 ← Sign(𝑆𝐾00, 𝑉𝐾000 | |𝑉𝐾001)
𝝉𝟎 ← Sign(𝑆𝐾000, 𝑚0)

𝑚0

𝜏0

42

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

Authentication Path for : 𝑉𝐾000

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

(,

,

𝝈𝝐 ← Sign(𝑆𝐾𝜖, 𝑉𝐾0 | |𝑉𝐾1)
𝝈𝟎 ← Sign(𝑆𝐾0, 𝑉𝐾00 | |𝑉𝐾01)) 𝝈𝟎𝟎 ← Sign(𝑆𝐾00, 𝑉𝐾000 | |𝑉𝐾001)

𝑚0

𝜏0

43

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

𝑚0

𝜏0

Signature of the first message 𝒎𝟎:
(Authentication path for ,

)

𝑉𝐾000
𝝉𝟎 ← Sign(𝑆𝐾000, 𝑚0) 44

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟎

𝑚1

𝜏1

Signature of the second message 𝒎𝟏:
(Authentication path for ,

)

𝑉𝐾001
𝝉𝟎 ← Sign(𝑆𝐾001, 𝑚1) 45

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑚2

𝜏2

Signature of the third message 𝒎𝟐:
(Authentication path for ,

)

𝑉𝐾010
𝝉𝟐 ← Sign(𝑆𝐾010, 𝑚2) 46

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑚2

𝜏2

GOOD NEWS:
Each verification key (incl. at the leaves) is used only
once, so one-time security suffices!

47

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑚2

𝜏2

GOOD NEWS:

Signatures consist of one-time signatures and do now
grow with time!

𝜆
48

Step 2. How to Shrink the signatures.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑚2

𝜏2

BAD NEWS:

Signer generates and keeps the entire (-size)
signature tree in memory!

≈ 2𝜆

49

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
 Idea: Pseudorandom Trees

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

50

Step 3. Pseudorandom Signature Trees.

𝑟0

𝑟𝜖

𝑟1

𝑟00

𝑟000 𝑟001

𝑟01

𝑟010 𝑟011

𝑟10

𝑟100 𝑟101

𝑟11

𝑟110 𝑟111

Tree of pseudorandom values:

Populate the nodes with .𝑟𝑥 = 𝑃𝑅𝐹(𝐾, 𝑥)
The signing key is a PRF key .𝐾
Use to derive the keys

.

𝑟𝑥
(𝑉𝐾𝑥, 𝑆𝐾𝑥) ← 𝐺𝑒𝑛(1𝜆; 𝑟𝑥)

,(𝑉𝐾𝜖 𝑆𝐾𝜖)

,(𝑉𝐾0 𝑆𝐾0) ,(𝑉𝐾1 𝑆𝐾1)

… … … …

51

Step 3. Pseudorandom Signature Trees.

Tree of pseudorandom values:

Populate the nodes with .𝑟𝑥 = 𝑃𝑅𝐹(𝐾, 𝑥)
The signing key is a PRF key .𝐾
Use to derive the keys

.

𝑟𝑥
(𝑉𝐾𝑥, 𝑆𝐾𝑥) ← 𝐺𝑒𝑛(1𝜆; 𝑟𝑥)

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝑟0

𝑟𝜖

𝑟1

𝑟00

𝑟000 𝑟001

𝑟01

𝑟010 𝑟011

𝑟10

𝑟100 𝑟101

𝑟11

𝑟110 𝑟111

52

Step 3. Pseudorandom Signature Trees.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

GOOD NEWS:

Short signatures and small storage for the signer
53

Step 3. Pseudorandom Signature Trees.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

BAD NEWS:
Signer needs to keep a counter indicating which leaf
(which tells her which secret key) to use next.

𝑚2

𝜏2

54

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.
 Idea: Randomization

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

55

Step 4. Statelessness via Randomization

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟏

𝝈𝟏𝟎

Signature of a message 𝒎:
Pick a random leaf . Use to sign . 𝑟 𝑉𝐾𝑟 𝑚

Output authentication path for (r, 𝜎𝑟, 𝑉𝐾𝑟)
𝜎𝑟 ← Sign(𝑆𝐾𝑟, 𝑚)

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑉𝐾010 𝑉𝐾101

56

Step 4. Statelessness via Randomization

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑉𝐾010

GOOD NEWS:

No need to keep state.

57

Step 4. Statelessness via Randomization

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑉𝐾010

Key Idea:
If the signer produces signatures, the probability she

picks the same leaf twice is .

𝑞
≤ 𝑞2/2𝜆

58

(Many-time) Signature Scheme
In four+ steps

Step 2. How to Shrink the signatures. Idea: Signature Trees

Step 3. How to Shrink Alice’s storage.
 Idea: Pseudorandom Trees

Step 4. How to make Alice stateless.
 Idea: Randomization

Step 5 (optional). How to make Alice stateless and
deterministic. Idea: PRFs.

Step 1. Stateful, Growing Signatures. Idea: Signature Chains

59

Step 5. Making the Signer Deterministic.

𝑉𝐾0

𝑉𝐾𝜖

𝑉𝐾1

𝑉𝐾00

𝑉𝐾000 𝑉𝐾001

𝑉𝐾01

𝑉𝐾010 𝑉𝐾011

𝑉𝐾10

𝑉𝐾100 𝑉𝐾101

𝑉𝐾11

𝑉𝐾110 𝑉𝐾111

𝝈𝝐

𝝈𝟎

𝝈𝟎𝟏

𝑉𝐾010

Key Idea:

Generate pseudo-randomly.𝑟
Have another PRF key and let 𝐾′ 𝑟 = 𝑃𝑅𝐹(𝐾′ , 𝑚)

60

That’s it for the construction.

61

