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CIS 5560

Lecture 16
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Recap of Last Lecture(s)
• Public Key Encryption


• Definition of IND-CPA

• ElGamal Encryption


• Version with message space = 

• Version with arbitrary message space

𝔾
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Today’s Lecture
• Public Key Encryption from Trapdoor OWFs


• RSA Encryption

• Arithmetic modulo composites

• Factoring
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Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• ():   randomized alg. outputs a key pair  

• : randomized alg. that takes  and outputs 

• : deterministic alg. that takes   and outputs 

Correctness:  output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m
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Security: IND-CPA for PKE
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For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)



Construction of PKE:

Trapdoor Functions
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Trapdoor functions (TDF)
Def: A trapdoor function for input space  and output space  
        is a triple of efficient algorithms 

• : randomized algorithm that outputs a key pair 

• : deterministic algorithm that computes 

• : defines a function  that inverts 

More precisely:      

X Y
(G, F, F−1)

G(1n) (𝗉𝗄, 𝗌𝗄)

F(𝗉𝗄, ⋅ ) f : X → Y

F−1(𝗌𝗄, ⋅ ) Y → X F(𝗉𝗄, ⋅ )

∀(𝗉𝗄, 𝗌𝗄) ← G(1n), ∀x ∈ X, F−1(𝗌𝗄, F(𝗉𝗄, x)) = x
7



Secure Trapdoor Functions (TDFs)
A TDF  is secure if  is a one-way function:(G, F, F−1) F𝗉𝗄
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Def:     is a secure TDF if for all efficient :
(G, F, F−1) A

Pr F(𝗉𝗄, x) = F(𝗉𝗄, x′ )
(𝗉𝗄, 𝗌𝗄) ← G(1n)

x ← X
x′ ← A(𝗉𝗄, F(𝗉𝗄, x))

= 𝗇𝖾𝗀𝗅(n)

Adversary AChallenger
(𝗉𝗄, 𝗌𝗄) ← G(1n)

x ← X x′ (𝗉𝗄, y := F(𝗉𝗄, x))



Construction: PKE from TDFs
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PKE from Secure TDFs: Attempt 1
• : secure TDF    (G, F, F−1) X → Y
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:
1. Output .
𝖤𝗇𝖼(𝗉𝗄, m)

c ← F(𝗉𝗄, m)
:

1. Output .
𝖣𝖾𝖼(𝗌𝗄, c)

m := F−1(𝗌𝗄, c)
:

1. Output .
𝖦𝖾𝗇(1n)

(𝗉𝗄, 𝗌𝗄) ← G(1n)

Q: Is this secure?

A: No! Entirely deterministic → cannot achieve IND-CPA!



PKE from Secure TDFs
• : secure TDF           

• : symmetric AE defined over  
• : a hash function (like the one in Hashed ElGamal)

(G, F, F−1) X → Y
(𝖦𝖾𝗇, 𝖤𝗇𝖼s, 𝖣𝖾𝖼𝗌) (𝒦, ℳ, 𝒞)
H : X → 𝒦
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:
1. Sample .
2. Compute key 
3. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
x ← X

k ← H(x)
(y ← F(𝗉𝗄, x), c ← 𝖤𝗇𝖼s(k, m))

:
1. Compute .
2. Compute key 
3. Output 

𝖣𝖾𝖼(𝗌𝗄, (y, c))
x := F−1(𝗌𝗄, y)

k ← H(x)
𝖣𝖾𝖼s(k, c)

:
1. Output .
𝖦𝖾𝗇(1n)

(𝗉𝗄, 𝗌𝗄) ← G(1n)



In pictures: 

Security Theorem:     
If  is a secure TDF, 
    is an AE scheme, and 
     is a “random oracle”  

then   is  IND-CPA  secure.

(G, F, F−1)
(𝖦𝖾𝗇, 𝖤𝗇𝖼s, 𝖣𝖾𝖼𝗌)
H : X → 𝒦

(𝖦𝖾𝗇, 𝖤𝗇𝖼, 𝖣𝖾𝖼)
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F(𝗉𝗄, x) 𝖤𝗇𝖼s(H(x), m)

header body



Review: Arithmetic modulo composites
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Let   where    are prime


         ;     


Facts: 

•    is invertible      ⇔    

• Number of elements in    is 


Euler’s thm:             

N = pq p, q

ℤN = {0,1,2,…, N − 1} ℤ*n = { invertible elements in ℤN}

x ∈ ℤN gcd(x, N ) = 1

ℤ*N φ(N ) = (p − 1)(q − 1) = N − p − q + 1

∀x ∈ ℤ*N : xφ(N) = 1

Review: arithmetic mod composites
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Modular -th rootse
We know how to solve modular linear equations:

	  in            Solution:   in 


                                                                                                      (inverses are fast even for  composite)


What about higher degree polynomials?

Example: Let  for two primes .

                Given an arbitrary , can we find  such that

                ?

Answering these questions requires the factorization of 

	 	 (as far as we know)

ax + b = 0 ℤN x = − b ⋅ a−1 ℤN
N

N = pq p, q
y ∈ ℤN x

y = xe mod N
N
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The factoring problem
Gauss (1805):


Best known alg.   (NFS):      run time      for -bit integer


Current world record:     RSA-768    (232 digits) 

• Work:  two years on hundreds of machines

• Factoring a 1024-bit integer:    about 1000 times harder

	 	 ⇒  likely possible this decade

2O( 3 n) n
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“The problem of distinguishing prime numbers from  
  composite numbers and of resolving the latter into  
  their prime factors is known to be one of the most  
  important and useful in arithmetic.”



Key lengths
Security of public key system should be comparable to 
security of symmetric cipher:

	 	 	 	 	 	     RSA

	 	 Cipher key-size	 	 Modulus size

	 	    80 bits	 	 	    1024 bits

	 	   128 bits	 	 	   3072 bits

	 	   256 bits (AES)	 	   15360 bits 
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Construction of Trapdoor Functions
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Big question: 

can we use hardness of computing

-th roots to construct a secure TDF? e
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Secure TDFs from -th rootse

20

:
1. Output .
F(𝗉𝗄 = (N, e), x)

xe mod N

:
1. Output .
𝖣𝖾𝖼(𝗌𝗄 = (p, q, d), y)

x := yd mod N

:
1. Sample primes  
2. Set 
3. Sample  s.t. 
4. Set  and 
5. Output .

𝖦𝖾𝗇(1n)
p, q ∼ 1024 bits

N = pq
e, d e = d−1 mod φ(N )

𝗌𝗄 = (p, q, d) 𝗉𝗄 := (N, e)
(𝗉𝗄, 𝗌𝗄)

Correctness:  ?
                      
             

∀(𝗉𝗄, 𝗌𝗄) ← G(1n), ∀x ∈ X, F−1(𝗌𝗄, F(𝗉𝗄, x)) = x

F−1
𝗌𝗄 (F𝗉𝗄(x)) = (xe)d ≡ x1 mod φ(N) ≡ x1+kφ(N) ≡ x mod N



This is called the RSA Trapdoor permutation

First published:      Scientific American, Aug. 1977. 

Very widely used:


– SSL/TLS:  certificates and key-exchange


– Secure e-mail and file systems


	 … many others
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Secure TDFs from -th rootse
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:
1. Output .
F(𝗉𝗄 = (N, e), x)

xe mod N

:
1. Output .
𝖣𝖾𝖼(𝗌𝗄 = (p, q, d), y)

x := yd mod N

:
1. Sample primes  
2. Set 
3. Sample  s.t. 
4. Set  and 
5. Output .

𝖦𝖾𝗇(1n)
p, q ∼ 1024 bits

N = pq
e, d e = d−1 mod φ(N )

𝗌𝗄 = (p, q, d) 𝗉𝗄 := (N, e)
(𝗉𝗄, 𝗌𝗄)

Security?



By “assumption”
RSA assumption: Roughly, computing -th roots is harde
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Pr A(𝗉𝗄, xe mod N ) = x (𝗉𝗄 = (N, d), 𝗌𝗄 = (p, q, e)) ← G(1n)
x ← X

= 𝗇𝖾𝗀𝗅(n)

The RSA TDF is actually a 
trapdoor permutation



Is the RSA assumption plausible?
To invert the RSA one-way func. (without d) attacker must compute

	 	     from    .


How hard is computing  -th  roots modulo N  ??


Best known algorithm:   

– Step 1:  factor  N     (hard)

– Step 2:  compute -th  roots modulo  and      (easy)

x c = xe mod N

e

e p q
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Shortcuts?
Must one factor N in order to compute -th roots?


To prove no shortcut exists we needa reduction:	 


– Efficient algorithm for -th roots mod 


⇒  efficient algorithm for factoring .

– Oldest problem in public key cryptography.


Some evidence no reduction exists:	         (BV’98)


– “Algebraic” reduction   ⇒   factoring is easy.

e

e N
N
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Textbook RSA is insecure

Textbook RSA encryption:

– public key:   (N,e)	 Encrypt:   c ⟵ me          (in  ZN)   


– secret key:   (N,d) Decrypt:   cd ⟶ m 

	 	 	 	 	 	 	 


Insecure cryptosystem !!  

– Is not semantically secure and many attacks exist


⇒     The RSA trapdoor permutation is not an encryption scheme !
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Dan Boneh

RSA in practice
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How not to improve RSA’s performance
To speed up RSA decryption use small private key       (  ≈ 2128 )


	 	 	 cd = m  (mod N)


Wiener’87:	 if   d < N0.25   then RSA is insecure.

BD’98:	 	 if   d < N0.292  then RSA is insecure      (open:  
d < N0.5  )


Insecure:    priv. key  d  can be found from  (N,e)

d d
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RSA With Low public exponent
To speed up RSA encryption use a small   e:        c = me (mod N)


• Minimum value:   e=3	  ( gcd(e, ϕ(N) ) = 1)


• Recommended value:   e=65537=216+1 

	 	 	 Encryption:   17 multiplications


Asymmetry of RSA:   fast enc. / slow dec.

– ElGamal (next module):   approx. same time for both.
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Further reading
• A Computational Introduction to Number Theory and 

Algebra, 
V. Shoup,  2008    (V2),     Chapter 1-4, 11, 12


	 Available at      //shoup.net/ntb/ntb-v2.pdf
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