CIS 5560

Cryptography Lecture 15

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Recap of Last Lecture(s)

- Number Theory refresher
 - Arithmetic modulo primes
 - Fermat's Little Theorem
 - Cyclic groups
 - Discrete Logarithms
- Key Exchange
 - Merkle puzzles
 - Diffie—Hellman
 - Computational Diffie—Hellman Problem

Today's Lecture

- Public Key Encryption
 - El Gamal Encryption
 - Computational Diffie—Hellman Problem
 - RSA Encryption
 - Arithmetic modulo composites
 - Factoring

Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes $m \in \mathcal{M}$ and outputs $c \in \mathcal{C}$
- Dec(sk, c): deterministic alg. that takes $c \in \mathscr{C}$ and outputs $m \in \mathscr{M} \cup \{ \perp \}$

Correctness: \forall (pk, sk) output by Gen(), $\forall m \in \mathcal{M}$, Dec(sk, Enc(pk, m)) = m

$$\Pr[b = b'] = 1/2 + \operatorname{negl}(n)$$

Security: IND-CPA for PKE

For all PPT adversaries \mathcal{A} , the following holds:

$$\Pr\left[b = \mathscr{A}(\mathsf{Enc}(\mathsf{pk}, m_b)) \middle| \begin{array}{l} (\mathsf{pk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^n) \\ \mathsf{Sample} \ b \leftarrow \{0, 1\} \\ (m_0, m_1) \leftarrow \mathscr{A}(\mathsf{pk}) \end{array} \right] \leq \mathsf{negl}(n)$$

How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security does not imply many-time security

For public key encryption:

• One-time security \Rightarrow many-time security (CPA)

(follows from the fact that attacker can encrypt by himself)

• Public key encryption **must** be randomized

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using pk_{alice}
- Note: Bob needs pk_{alice} (public key management)

Constructions of PKE: Elgamal Encryption Review of cyclic groups (On board)

Recall: DH Key Exchange

Convert DH → PKE

The Elgamal system (an abstract view)

- G: finite cyclic group of prime order p with generator g
- (Enc['], Dec[']): symmetric-key encryption with keyspace $\mathscr{K} = \mathbb{G}$

 $\frac{\text{Gen}(1^n):}{1.\text{Sample } a \leftarrow \mathbb{Z}_p^*}$ 2.Output (sk = a, pk = g^a)

Enc(pk, m):
1. Sample
$$b \leftarrow \mathbb{Z}_p^*$$

2. Set $B = g^b$
3. Set $c := \text{Enc}'(\text{pk}^b, m)$
4. Output $c' = (B, c)$

Dec(sk = a, (B, c)): 1. Compute $k = B^a$ 2. Output m = Dec'(k, c)

What choice of (Enc['], Dec['])?

How to prove security?

Q1: Choice of (Enc['], Dec[']): OTP?

- \mathbb{G} : finite cyclic group of prime order p with generator g
- Key idea: One-Time Pad works not just with $\{0,1\}^n$ and XOR, but with *any group*
 - Gen'(1^{*n*}): Sample $r \leftarrow \mathbb{Z}_p$, and output g^r
 - $\operatorname{Enc}'(k = g^r, m \in \mathbb{G})$: Output $c = k \cdot m \in \mathbb{G}$
 - $\operatorname{Dec}'(k = g^r, c \in \mathbb{G})$: Output $m = k^{-1} \cdot c \in \mathbb{G}$

Correctness: $Dec'(k, Enc'(k, m)) = k \cdot m \cdot k^{-1} = m$

Security: Goal: $\forall m, m' \in \mathbb{G}, c \in \mathbb{G}, \Pr_{k \leftarrow \mathbb{G}} [\text{Enc}(k, m) = c] = \Pr_{k \leftarrow \mathbb{G}} [\text{Enc}(k, m') = c]$

Exercise: prove this (try to adapt proof from Lecture 1)

The Elgamal system (a concrete view)

- G: finite cyclic group of prime order p with generator g
- (Enc['], Dec[']): symmetric-key encryption with keyspace $\mathscr{K} = \mathbb{G}$

 $\frac{\text{Gen}(1^n):}{1.\text{Sample } a \leftarrow \mathbb{Z}_p^*}$ 2.Output (sk = a, pk = g^a)

Enc(pk, m):
1. Sample
$$b \leftarrow \mathbb{Z}_p^*$$

2. Set $B = g^b$
3. Set $c := \text{Enc}'(\text{pk}^b, m)$
4. Output $c' = (B, c)$

Dec(sk = a, (B, c)): 1. Compute $k = B^a$ 2. Output m = Dec'(k, c)

What choice of (Enc['], Dec['])?

How to prove security?

The Elgamal system (a concrete view)

- G: finite cyclic group of prime order p with generator g
- (Enc['], Dec[']): symmetric-key encryption with keyspace $\mathscr{K} = \mathbb{G}$

What choice of (Enc['], Dec['])?

How to prove security?

Problem: OTP uses random group element

But we only have
$$g^{ab}$$
!

Is this a problem? Isn't g^{ab} also random?

Problem: adversary *also* sees g^a and g^b !

New assumption: Decisional Diffie—Hellman

Roughly, (g^a, g^b, g^{ab}) is indistinguishable from (g^a, g^b, g^r)

Formally, the following two distributions are computationally indistinguishable:

$$\{(g^a, g^b, g^{ab})\}_{a, b \leftarrow \mathbb{Z}_p} \text{ and } \{(g^a, g^b, g^r)\}_{a, b, r \leftarrow \mathbb{Z}_p}$$

Elgamal is semantically secure under DDH

The Elgamal system (a modern view)

- G: finite cyclic group of prime order p with generator g
- (Enc['], Dec[']): what about arbitrary keyspace \mathscr{K} ?
- New ingredient: "Random"-ish hash function $H:\mathbb{G}\to \mathscr{K}$

$$\underline{Gen(1^n)}$$
: \underline{Ence} 1. Sample $a \leftarrow \mathbb{Z}_p^*$ 1. Sample a 2. Output (sk = a , pk = g^a)2. Sample a 3. Sample $a \leftarrow \mathbb{Z}_p^*$ 3. Sample a

$$\frac{\text{Enc}(\text{pk}, m):}{1. \text{ Sample } b \leftarrow \mathbb{Z}_p^*}$$

$$2. \text{ Set } k := H(g^{ab})$$

$$3. \text{ Set } c \leftarrow \text{Enc}(k, m)$$

$$4. \text{ Output } c' = (g^b, c)$$

$$\frac{\text{Dec}(\text{sk} = a, (B, c)):}{1. \text{ Compute } k = H(B^a)}$$

2. Output $m = \text{Dec}'(k, c)$

New assumption: Hash-DDH

Roughly, $(g^a, g^b, H(g^{ab}))$ is indistinguishable from (g^a, g^b, R)

Formally, the following two distributions are computationally indistinguishable: $\{(g^a, g^b, H(g^{ab}))\}_{a,b \leftarrow \mathbb{Z}_p} \text{ and } \{(g^a, g^b, R)\}_{a,b \leftarrow \mathbb{Z}_p, R \leftarrow \mathcal{K}}$

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose $K = \{0, 1\}^{128}$ and

H: G \longrightarrow K only outputs strings in K that begin with 0 (i.e. for all y: msb(H(y))=0)

Can Hash-DH hold for (G, H)?

- O Yes, for some groups G
- No, Hash-DH is easy to break in this case
 - Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

