CIS 5560

Cryptography Lecture 15

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Recap of Last Lecture(s)

- Number Theory refresher
- Arithmetic modulo primes
- Fermat's Little Theorem
- Cyclic groups
- Discrete Logarithms
- Key Exchange
- Merkle puzzles
- Diffie-Hellman
- Computational Diffie-Hellman Problem

Today's Lecture

- Public Key Encryption
- El Gamal Encryption
- Computational Diffie-Hellman Problem
- RSA Encryption
- Arithmetic modulo composites
- Factoring

Public key encryption

Alice: generates (PK, SK) and gives PK to Bob

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)

- Gen(): randomized alg. outputs a key pair (pk, sk)
- Enc(pk, m): randomized alg. that takes $m \in \mathscr{M}$ and outputs $c \in \mathscr{C}$
- $\operatorname{Dec}($ sk, $c)$: deterministic alg. that takes $c \in \mathscr{C}$ and outputs $m \in \mathscr{M} \cup\{\perp\}$

Correctness: $\forall(\mathrm{pk}, \mathrm{sk})$ output by $\operatorname{Gen}(), \forall m \in \mathscr{M}, \operatorname{Dec}(\mathrm{sk}, \operatorname{Enc}(\mathrm{pk}, m))=m$

Security: IND-CPA for PKE

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\operatorname{neg}(n)
$$

Security: IND-CPA for PKE

For all PPT adversaries \mathscr{A}, the following holds:

$$
\operatorname{Pr}\left[b=\mathscr{A}\left(\operatorname{Enc}\left(\mathrm{pk}, m_{b}\right)\right) \left\lvert\, \begin{array}{r}
(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{n}\right) \\
\text { Sample } b \leftarrow\{0,1\} \\
\left(m_{0}, m_{1}\right) \leftarrow \mathscr{A}(\mathrm{pk})
\end{array}\right.\right] \leq \operatorname{negl}(n)
$$

How does it relate to symmetric-key IND-CPA?

Recall: for symmetric ciphers we had two security notions:

- One-time security and many-time security (CPA)
- We showed that one-time security does not imply many-time security

For public key encryption:

- One-time security \Rightarrow many-time security (CPA)
(follows from the fact that attacker can encrypt by himself)
- Public key encryption must be randomized

Applications

Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

- Bob sends email to Alice encrypted using $\mathrm{pk}_{\text {alice }}$
- Note: Bob needs $\mathrm{pk}_{\text {alice }}$ (public key management)

Constructions of PKE: Elgamal Encryption

Review of cyclic groups
(On board)

Recall: DH Key Exchange

Convert DH \rightarrow PKE

The Elgamal system (an abstract view)

- \mathbb{G} : finite cyclic group of prime order p with generator g
- (Enc', Dec'): symmetric-key encryption with keyspace $\mathscr{K}=\mathbb{G}$

```
Gen(1n):
1.Sample }a\leftarrow\mp@subsup{\mathbb{Z}}{p}{*
2.Output ( \(\mathrm{sk}=a, \mathrm{pk}=g^{a}\) )
```

Enc(pk, m):

1. Sample $b \leftarrow \mathbb{Z}_{p}^{*}$
2. Set $B=g^{b}$
3. Set $c:=\operatorname{Enc}^{\prime}\left(\mathrm{pk}^{b}, m\right)$
4. Output $c^{\prime}=(B, c)$
$\operatorname{Dec}($ sk $=a,(B, c))$:
5. Compute $k=B^{a}$
6. Output $m=\operatorname{Dec}^{\prime}(k, c)$

What choice of (Enc', Dec')?
How to prove security?

Q1: Choice of (Enc', Dec'): OTP?

- G: finite cyclic group of prime order p with generator g
- Key idea: One-Time Pad works not just with $\{0,1\}^{n}$ and XOR, but with any group
- Gen' ${ }^{\prime}\left(1^{n}\right)$: Sample $r \leftarrow \mathbb{Z}_{p}$, and output g^{r}
- Enc' $\left(k=g^{r}, m \in \mathbb{G}\right)$: Output $c=k \cdot m \in \mathbb{G}$
- $\operatorname{Dec}^{\prime}\left(k=g^{r}, c \in \mathbb{G}\right)$: Output $m=k^{-1} \cdot c \in \mathbb{G}$

Correctness: $\operatorname{Dec}^{\prime}\left(k, \operatorname{Enc}^{\prime}(k, m)\right)=k \cdot m \cdot k^{-1}=m$
Security: Goal: $\forall m, m^{\prime} \in \mathbb{G}, c \in \mathbb{G}, \operatorname{Pr}_{k \rightarrow \mathbb{G}}[\operatorname{Enc}(k, m)=c]=\operatorname{Pr}_{k \in \mathbb{G}}\left[\operatorname{Enc}\left(k, m^{\prime}\right)=c\right]$

The Elgamal system (a concrete view)

- \mathbb{G} : finite cyclic group of prime order p with generator g
- (Enc', Dec'): symmetric-key encryption with keyspace $\mathscr{K}=\mathbb{G}$

```
Gen(1 }\mp@subsup{}{}{n}\mathrm{ ):
1.Sample }a\leftarrow\mp@subsup{\mathbb{Z}}{p}{*
2.Output ( \(\mathrm{sk}=a, \mathrm{pk}=g^{a}\) )
```

Enc(pk, m):

1. Sample $b \leftarrow \mathbb{Z}_{p}^{*}$
2. Set $B=g^{b}$
3. Set $c:=\operatorname{Enc}^{\prime}\left(\mathrm{pk}^{b}, m\right)$
4. Output $c^{\prime}=(B, c)$
$\operatorname{Dec}(s k=a,(B, c))$:
5. Compute $k=B^{a}$
6. Output $m=\operatorname{Dec}^{\prime}(k, c)$

What choice of (Enc', Dec')?
How to prove security?

The Elgamal system (a concrete view)

- \mathbb{G} : finite cyclic group of prime order p with generator g
- (Enc', Dec'): symmetric-key encryption with keyspace $\mathscr{K}=\mathbb{G}$
Gen $\left(1^{n}\right):$
1.Sample $a \leftarrow \mathbb{Z}_{p}^{*}$
2.Output $\left(\mathrm{sk}=a, \mathrm{pk}=g^{a}\right)$
Enc(pk, m):

1. Sample $b \leftarrow \mathbb{Z}_{p}^{*}$
2. Set $B=g^{b}$
3. Set $c:=m \cdot \mathrm{pk}^{b}=m g^{a b}$
4. Output $c^{\prime}=(B, c)$

$$
\begin{aligned}
& \text { Dec }(\text { sk }=a,(B, c)) \text { : } \\
& \text { 1. Compute } k=B^{a} \\
& \text { 2. Output } m=k^{-1} c \\
& =c g^{-a b} \\
& =m g^{a b} g^{-a b}
\end{aligned}
$$

What choice of (Enc', Dec')?
How to prove security?

Problem:

OTP uses random group element

$$
\text { But we only have } g^{a b}!
$$

Is this a problem? Isn't $g^{a b}$ also random?
Problem: adversary also sees g^{a} and g^{b} !

New assumption: Decisional Diffie-Hellman

Roughly, $\left(g^{a}, g^{b}, g^{a b}\right)$ is indistinguishable from $\left(g^{a}, g^{b}, g^{r}\right)$

Formally, the following two distributions are computationally indistinguishable:

$$
\left\{\left(g^{a}, g^{b}, g^{a b}\right)\right\}_{a, b \leftarrow \mathbb{Z}_{p}} \text { and }\left\{\left(g^{a}, g^{b}, g^{r}\right)\right\}_{a, b, r \leftarrow \mathbb{Z}_{p}}
$$

Elgamal is semantically secure under DDH

The Elgamal system (a modern view)

- \mathbb{G} : finite cyclic group of prime order p with generator g
- (Enc', Dec'): what about arbitrary keyspace \mathscr{K} ?
- New ingredient: "Random"-ish hash function $H: \mathbb{G} \rightarrow \mathscr{K}$
$\frac{\operatorname{Gen}\left(1^{n}\right):}{\text { 1.Sample } a \leftarrow \mathbb{Z}_{p}^{*}}$

2. Output $\left(\mathrm{sk}=a, \mathrm{pk}=g^{a}\right)$
Enc $(\mathrm{pk}, m):$
3. Sample $b \leftarrow \mathbb{Z}_{p}^{*}$
4. Set $k:=H\left(g^{a b}\right)$
5. Set $c \leftarrow \operatorname{Enc}(k, m)$
6. Output $c^{\prime}=\left(g^{b}, c\right)$

$$
\underline{\operatorname{Dec}(\mathrm{sk}}=a,(B, c)):
$$

1. Compute $k=H\left(B^{a}\right)$
2. Output $m=\operatorname{Dec}^{\prime}(k, c)$

New assumption: Hash-DDH

Roughly, $\left(g^{a}, g^{b}, H\left(g^{a b}\right)\right)$ is indistinguishable from $\left(g^{a}, g^{b}, R\right)$

Formally, the following two distributions are computationally indistinguishable:

$$
\left\{\left(g^{a}, g^{b}, H\left(g^{a b}\right)\right)\right\}_{a, b \leftarrow \mathbb{Z}_{p}} \text { and }\left\{\left(g^{a}, g^{b}, R\right)\right\}_{a, b \leftarrow \mathbb{Z}_{p}, R \leftarrow \mathscr{K}}
$$

Q: If DDH is hard, is H-DDH hard?
Q: If H-DDH is hard, is DDH hard?

Suppose $K=\{0,1\}^{128}$ and
$\mathrm{H}: \mathrm{G} \rightarrow \mathrm{K}$ only outputs strings in K that begin with 0

$$
\text { (i.e. for all } y: \operatorname{msb}(H(y))=0 \text {) }
$$

Can Hash-DH hold for (G, H) ?

Yes, for some groups G
No, Hash-DH is easy to break in this case Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

