
1

CIS 5560

Lecture 15
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Recap of Last Lecture(s)
• Number Theory refresher

• Arithmetic modulo primes

• Fermat's Little Theorem

• Cyclic groups

• Discrete Logarithms

• Key Exchange

• Merkle puzzles

• Diffie—Hellman

• Computational Diffie—Hellman Problem
2

Today’s Lecture
• Public Key Encryption

• El Gamal Encryption

• Computational Diffie—Hellman Problem

• RSA Encryption

• Arithmetic modulo composites

• Factoring

3

Dan Boneh

Public key encryption

E D

Alice Bob

pk sk

m c c m

Alice: generates (PK, SK) and gives PK to Bob

Public key encryption
Def: a public-key encryption system is a triple of algs. (G, E, D)

• (): randomized alg. outputs a key pair

• : randomized alg. that takes and outputs

• : deterministic alg. that takes and outputs

Correctness: output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m

5

Security: IND-CPA for PKE

6

Challenger

1.
2. Sample

3. Compute

4.

b ← {0,1}
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

cb = 𝖤𝗇𝖼(𝗉𝗄, mb)

b ?= b′

Adv 𝒜

(m0, m1)

cb

𝗉𝗄

Pr[b = b′] = 1/2 + 𝗇𝖾𝗀𝗅(n)

b′

Security: IND-CPA for PKE

7

For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)

How does it relate to symmetric-key IND-CPA?
Recall: for symmetric ciphers we had two security notions:

• One-time security and many-time security (CPA)

• We showed that one-time security does not imply many-time security

For public key encryption:

• One-time security ⇒ many-time security (CPA)

 (follows from the fact that attacker can encrypt by himself)

• Public key encryption must be randomized

8

Applications
Session setup (for now, only eavesdropping security)

Non-interactive applications: (e.g. Email)

• Bob sends email to Alice encrypted using pkalice

• Note: Bob needs pkalice (public key management)
9

Generate (pk, sk)
Alice

choose random x
(e.g. 48 bytes)

Bobpk

E(pk, x)
x

Constructions of PKE:
Elgamal Encryption

10

Review of cyclic groups

(On board)

11

Recall: DH Key Exchange

12

Alice BobA = ga

B = gb

K = Ba = gab K = Ab = gab

c = 𝖤𝗇𝖼′ (K, m)

Convert DH → PKE

13

Alice Bob

𝗉𝗄 = ga

c′ := (B, c)

:

1. Sample

2. Set

3. Set

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

𝖦𝖾𝗇(1n)
↓

(𝗌𝗄 = a, 𝗉𝗄 = ga)

:

1. Compute

2. Compute

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)

The Elgamal system (an abstract view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′) 𝒦 = 𝔾

14

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′)

How to prove security?

Q1: Choice of : OTP?(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′)
• : finite cyclic group of prime order with generator

• Key idea: One-Time Pad works not just with and XOR, but with any group

• : Sample , and output

• : Output

• : Output

𝔾 p g

{0,1}n

𝖦𝖾𝗇′ (1n) r ← ℤp gr

𝖤𝗇𝖼′ (k = gr, m ∈ 𝔾) c = k ⋅ m ∈ 𝔾

𝖣𝖾𝖼′ (k = gr, c ∈ 𝔾) m = k−1 ⋅ c ∈ 𝔾

15

Correctness:

Security:

𝖣𝖾𝖼′ (k, 𝖤𝗇𝖼′ (k, m)) = k ⋅ m ⋅ k−1 = m

Goal: , ,

Exercise: prove this (try to adapt proof from Lecture 1)

∀m, m′ ∈ 𝔾 c ∈ 𝔾 Pr
k←𝔾

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝔾

[𝖤𝗇𝖼(k, m′) = c]

The Elgamal system (a concrete view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′) 𝒦 = 𝔾

16

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′)

How to prove security?

The Elgamal system (a concrete view)
• : finite cyclic group of prime order with generator

• : symmetric-key encryption with keyspace

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′) 𝒦 = 𝔾

17

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := m ⋅ 𝗉𝗄b = mgab

c′ = (B, c)

:

1. Compute

2. Output

3. Set

4.Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′)

How to prove security?

m = k−1c
= cg−ab

= mgabg−ab

Problem:

OTP uses random group element

But we only have !

Is this a problem? Isn’t also random?

Problem: adversary also sees and !

gab

gab

ga gb
18

New assumption: Decisional Diffie—Hellman

19

Roughly, is indistinguishable from

Formally, the following two distributions are computationally indistinguishable:

 and

(ga, gb, gab) (ga, gb, gr)

{(ga, gb, gab)}a,b←ℤp
{(ga, gb, gr)}a,b,r←ℤp

Elgamal is semantically secure under DDH

20

≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m0gab)

b′

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m1gab)

pk = (g,ga)

b′

chal. adv. A

pk,sk
m0 , m1

c = (gb, m0gr)

pk = ga

b′

r ← ℤp

chal. adv. A

pk,sk
m0 , m1

c = (gb, m1gr)

pk = ga

b′

r ← ℤp

≈ (By OTP)

By DDH

By DDH

The Elgamal system (a modern view)
• : finite cyclic group of prime order with generator

• : what about arbitrary keyspace ?

• New ingredient: “Random”-ish hash function

𝔾 p g

(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′) 𝒦
H : 𝔾 → 𝒦

21

:

1.Sample

2.Output

3. Set

4. Output

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample

2. Set

3. Set

4. Output

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

k := H(gab)
c ← 𝖤𝗇𝖼(k, m)

c′ = (gb, c)

:

1. Compute

2. Output

3. Set

4. Output

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = H(Ba)

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)

New assumption: Hash-DDH

22

Roughly, is indistinguishable from

Formally, the following two distributions are computationally indistinguishable:

 and

(ga, gb, H(gab)) (ga, gb, R)

{(ga, gb, H(gab))}a,b←ℤp
{(ga, gb, R)}a,b←ℤp,R←𝒦

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?

Suppose K = {0,1}128 and

 H: G ⟶ K only outputs strings in K that begin with 0
 (i.e. for all y: msb(H(y))=0)

Can Hash-DH hold for (G, H) ?

Yes, for some groups G
No, Hash-DH is easy to break in this case
Yes, Hash-DH is always true for such H

Elgamal is semantically secure under H-DDH

24

≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′ (k, m0)

b′

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′ (k, m0)

pk = (g,ga)

b′

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′

 c = (gb, 𝖤𝗇𝖼′ (k, m0)
r ← ℤp

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′

 c = (gb, 𝖤𝗇𝖼′ (k, m1)r ← ℤp

≈ (By OTP)

By H-DDH

By H-DDH

k = H(gab) k ← 𝒦

k ← 𝒦k = H(gab)

