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CIS 5560

Lecture 15
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Recap of Last Lecture(s)
• Number Theory refresher


• Arithmetic modulo primes

• Fermat's Little Theorem

• Cyclic groups

• Discrete Logarithms


• Key Exchange

• Merkle puzzles

• Diffie—Hellman


• Computational Diffie—Hellman Problem
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Today’s Lecture
• Public Key Encryption


• El Gamal Encryption

• Computational Diffie—Hellman Problem


• RSA Encryption

• Arithmetic modulo composites

• Factoring
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Dan Boneh

Public key encryption

E D

Alice Bob

pk sk

m c c m

Alice:    generates    (PK, SK)    and gives  PK  to Bob 



Public key encryption
Def:   a public-key encryption system is a triple of algs.   (G, E, D)

• ():   randomized alg. outputs a key pair  

• : randomized alg. that takes  and outputs 

• : deterministic alg. that takes   and outputs 

Correctness:  output by ,

𝖦𝖾𝗇 (𝗉𝗄, 𝗌𝗄)

𝖤𝗇𝖼(𝗉𝗄, m) m ∈ ℳ c ∈ 𝒞

𝖣𝖾𝖼(𝗌𝗄, c) c ∈ 𝒞 m ∈ ℳ ∪ { ⊥ }

∀(𝗉𝗄, 𝗌𝗄) 𝖦𝖾𝗇() ∀m ∈ ℳ, 𝖣𝖾𝖼(𝗌𝗄, 𝖤𝗇𝖼(𝗉𝗄, m)) = m
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Security: IND-CPA for PKE
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Challenger

1.
2. Sample 

3. Compute 

4. 

b ← {0,1}
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

cb = 𝖤𝗇𝖼(𝗉𝗄, mb)

b ?= b′ 

Adv 𝒜

(m0, m1)

cb

𝗉𝗄

Pr[b = b′ ] = 1/2 + 𝗇𝖾𝗀𝗅(n)

b′ 



Security: IND-CPA for PKE
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For all PPT adversaries , the following holds:𝒜

Pr b = 𝒜(𝖤𝗇𝖼(𝗉𝗄, mb))
(𝗉𝗄, 𝗌𝗄) ← 𝖦𝖾𝗇(1n)

Sample b ← {0,1}
(m0, m1) ← 𝒜(𝗉𝗄)

≤ 𝗇𝖾𝗀𝗅(n)



How does it relate to symmetric-key IND-CPA?
Recall:   for symmetric ciphers we had two security notions: 

• One-time security      and    many-time security (CPA) 

• We showed that one-time security does not imply many-time security 

For public key encryption: 

• One-time security    ⇒   many-time security  (CPA) 

 (follows from the fact that attacker can encrypt by himself) 

• Public key encryption must be randomized
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Applications
Session setup    (for now, only eavesdropping security) 

Non-interactive applications:  (e.g.  Email) 

• Bob sends email to Alice encrypted using  pkalice 

• Note:   Bob needs  pkalice    (public key management)
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Generate  (pk, sk)
Alice

choose random x 
(e.g.  48 bytes) 

Bobpk

E(pk, x)
x



Constructions of PKE: 
Elgamal Encryption
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Review of cyclic groups

(On board)
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Recall: DH Key Exchange
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Alice BobA = ga

B = gb

K = Ba = gab K = Ab = gab

c = 𝖤𝗇𝖼′ (K, m)



Convert DH → PKE
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Alice Bob

𝗉𝗄 = ga

c′ := (B, c)

:

1. Sample 

2. Set 

3. Set 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

𝖦𝖾𝗇(1n)
↓

(𝗌𝗄 = a, 𝗉𝗄 = ga)

:

1. Compute 

2. Compute 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)



The Elgamal system (an abstract view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ ) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ )

How to prove security?



Q1: Choice of : OTP?(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ )
• : finite cyclic group of prime order  with generator 


• Key idea: One-Time Pad works not just with  and XOR, but with any group


• : Sample , and output 


• : Output 


• : Output 

𝔾 p g

{0,1}n

𝖦𝖾𝗇′ (1n) r ← ℤp gr

𝖤𝗇𝖼′ (k = gr, m ∈ 𝔾) c = k ⋅ m ∈ 𝔾

𝖣𝖾𝖼′ (k = gr, c ∈ 𝔾) m = k−1 ⋅ c ∈ 𝔾
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Correctness:  


Security: 

𝖣𝖾𝖼′ (k, 𝖤𝗇𝖼′ (k, m)) = k ⋅ m ⋅ k−1 = m

Goal: , , 

Exercise: prove this (try to adapt proof from Lecture 1)

∀m, m′ ∈ 𝔾 c ∈ 𝔾 Pr
k←𝔾

[𝖤𝗇𝖼(k, m) = c] = Pr
k←𝔾

[𝖤𝗇𝖼(k, m′ ) = c]



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ ) 𝒦 = 𝔾
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ )

How to prove security?



The Elgamal system (a concrete view)
• : finite cyclic group of prime order  with generator 

• : symmetric-key encryption with keyspace 

𝔾 p g
(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ ) 𝒦 = 𝔾

17

:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

B = gb

c := m ⋅ 𝗉𝗄b = mgab

c′ = (B, c)

:

1. Compute 

2. Output

3. Set 


4.Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = Ba

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

What choice of ? (𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ )

How to prove security?

m = k−1c
= cg−ab

= mgabg−ab



Problem: 

OTP uses random group element


But we only have !


Is this a problem? Isn’t  also random?


Problem: adversary also sees  and !

gab

gab

ga gb
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New assumption: Decisional Diffie—Hellman
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, gab) (ga, gb, gr)

{(ga, gb, gab)}a,b←ℤp
{(ga, gb, gr)}a,b,r←ℤp



Elgamal is semantically secure under DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m0gab)

b′ 

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, m1gab)

pk = (g,ga)

b′ 

chal. adv. A

pk,sk
m0 , m1

c = (gb, m0gr)

pk = ga

b′ 

r ← ℤp

chal. adv. A

pk,sk
m0 , m1

c = (gb, m1gr)

pk = ga

b′ 

r ← ℤp

≈ (By OTP)

By DDH

By DDH



The Elgamal system (a modern view)
• : finite cyclic group of prime order  with generator 


• : what about arbitrary keyspace ?


• New ingredient: “Random”-ish hash function 

𝔾 p g

(𝖤𝗇𝖼′ , 𝖣𝖾𝖼′ ) 𝒦
H : 𝔾 → 𝒦
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:

1.Sample 

2.Output 

3. Set 

4. Output 

𝖦𝖾𝗇(1n)
a ← ℤ*p
(𝗌𝗄 = a, 𝗉𝗄 = ga)

c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)
c′ = (B, c)

:

1. Sample 

2. Set 

3. Set 

4. Output 

𝖤𝗇𝖼(𝗉𝗄, m)
b ← ℤ*p

k := H(gab)
c ← 𝖤𝗇𝖼(k, m)

c′ = (gb, c)

:

1. Compute 

2. Output 

3. Set 

4. Output 

𝖣𝖾𝖼(𝗌𝗄 = a, (B, c))
k = H(Ba)

m = 𝖣𝖾𝖼′ (k, c)
c := 𝖤𝗇𝖼′ (𝗉𝗄b, m)

c′ = (B, c)



New assumption: Hash-DDH
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Roughly,  is indistinguishable from 


Formally, the following two distributions are computationally indistinguishable:


 and 

(ga, gb, H(gab)) (ga, gb, R)

{(ga, gb, H(gab))}a,b←ℤp
{(ga, gb, R)}a,b←ℤp,R←𝒦

Q: If DDH is hard, is H-DDH hard?

Q: If H-DDH is hard, is DDH hard?



Suppose   K = {0,1}128   and  

   H: G ⟶ K  only outputs strings in K that begin with 0 
   ( i.e.  for all y:  msb(H(y))=0   ) 

Can Hash-DH hold for  (G, H) ? 

Yes, for some groups  G
No, Hash-DH is easy to break in this case
Yes, Hash-DH is always true for such H



Elgamal is semantically secure under H-DDH
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≈

≈

≈

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′ (k, m0)

b′ 

pk = ga

chal. adv. A

pk,sk
m0 , m1

 c = (gb, 𝖤𝗇𝖼′ (k, m0)

pk = (g,ga)

b′ 

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′ 

 c = (gb, 𝖤𝗇𝖼′ (k, m0)
r ← ℤp

chal. adv. A

pk,sk
m0 , m1

pk = ga

b′ 

 c = (gb, 𝖤𝗇𝖼′ (k, m1)r ← ℤp

≈ (By OTP)

By H-DDH

By H-DDH

k = H(gab) k ← 𝒦

k ← 𝒦k = H(gab)


