CIS 5560

Cryptography Lecture 13

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- Final Exam May 10, 2024, 9-11AM, DRLB A2
- HW6 is out, due 3/12 at 1PM
- Midterm coming up: 3/14 in class
 - 80 minutes long, starts at 1:47PM
 - We will provide a cheat sheet with all the information (definitions, proof strategies, etc) you will need
 - 3/12 will be a review session in class.

Recap of Last Lecture

- Number Theory refresher
 - Arithmetic modulo primes
 - Fermat's Little Theorem
 - Cyclic groups
 - Discrete Logarithms

The Multiplicative Group \mathbb{Z}_p^*

 \mathbb{Z}_p^* : ({1,..., p - 1}, group operation: • mod *p*)

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given g ∈ Z^{*}_p and x ∈ Z_{p-1}, find g^x mod
 p) is easy: Repeated Squaring Algorithm.
- The discrete logarithm problem (given a generator g and h ∈ Z^{*}_p, find x ∈ Z_{p-1} s.t. h = g^x mod p) is hard, to the best of our knowledge!

Today's Lecture

- Key Exchange
 - Merkle puzzles
 - Diffie—Hellman
 - Computational Diffie—Hellman Problem

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better (?) solution

Online Trusted 3rd Party (TTP)

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow

eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys. (basis of Kerberos system)

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob — For example a book order

Attacker replays session to Bob

Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Basic key exchange: Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$

_ puzzle(P) = E(P, "message") where $P = 0^{96} \parallel b_1 \dots b_{32}$

– Goal: find P by trying all 2³² possibilities

Merkle puzzles

<u>Alice</u>: prepare 2³² puzzles

• For i=1, ..., 2³² choose random $P_i \in \{0,1\}^{32}$ and $x_i, k_i \in \{0,1\}^{128}$

set $puzzle_i \leftarrow E(0^{96} || \mathbf{P}_i, "Puzzle \# \mathbf{x}_i" || \mathbf{k}_i)$

• Send puzzle₁, ..., puzzle₂₃₂ to Bob

<u>Bob</u>: choose a random $puzzle_i$ and solve it. Obtain (x_i, k_i) .

• Send x_i to Alice

<u>Alice</u>: lookup puzzle with number x_i . Use k_i as shared secret₁₅

In a figure

Alice's work:O(n)(prepare n puzzles)Bob's work:O(n)(solve one puzzle)

Eavesdropper's work: O(n²) (e.g. 2⁶⁴ time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher? Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as a black box oracle [IR'89, BM'09]

Better key exchange:

Diffie—Hellman

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)

Fix generator g of \mathbb{Z}_p^*

<u>Alice</u>

<u>Bob</u>

choose random **a** in {1,...,p-1} "Akce", $A \leftarrow g^{a} \pmod{p}$ "Bob", $B \leftarrow g^{b} \pmod{p}$ **B**^a (mod p) = $(g^{b})^{a} = k_{AB} = g^{ab} \pmod{p}$ = $(g^{a})^{b} = A^{b} \pmod{p}$

Security (much more on this later)

Eavesdropper sees: p, g, $A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

How hard is the DH function mod p?

How hard is the DH function mod p?

Suppose prime p is n k	oits long	•	
Best known algorithm (GNFS): run time			exp($ ilde{O}(\sqrt[3]{n})$)
			Elliptic Curve
<u>cipher key size</u>	<u>modulus size</u>		size
80 bits	1024 bits		160 bits
128 bits	3072 bits		256 bits
256 bits (AES)	15360 bits		512 bits

As a result: slow transition away from (mod p) to elliptic curves

www.google.com

The identity of this website has been verified by Thawte SGC CA.

Certificate Information

Your connection to www.google.com is encrypted with 128-bit encryption.

The connection uses TLS 1.0.

The connection is encrypted using RC4_128, wth SHA1 for message authentication and ECDHE_RSA as the key exchange mechanism.

Elliptic curve Diffie-Hellman

Security against man-in-the-middle?

As described, the protocol is insecure against **active** attacks

Another look at DH

Computational Diffie-Hellman (CDH) Assumption

 $\frac{\text{W.r.t. a random prime}: \text{ for every p.p.t. algorithm } A,}{\text{there is a negligible function } \mu \text{ s.t.}}$ $\Pr\left[\begin{array}{l} p \leftarrow PRIMES_n; g \leftarrow GEN\left(\mathbb{Z}_p^*\right);\\ x, y \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^x, g^y\right) = g^{xy} \end{array} \right] = \mu(n)$

Further readings

Merkle Puzzles are Optimal,
B. Barak, M. Mahmoody-Ghidary, Crypto '09

On formal models of key exchange (sections 7-9)
 V. Shoup, 1999

DLOG: more generally

Let \mathbb{G} be a finite cyclic group and g a generator of \mathbb{G}

$$G = \{ 1, g, g^2, g^3, \dots, g^{q-1} \}$$
 (q is called the order of G)

<u>Def</u>: We say that **DLOG is hard in G** if for all efficient alg. A:

$$Pr_{g \leftarrow G, x \leftarrow Z_q} \left[A(G, q, g, g^x) = x \right] < negligible$$

Example candidates:

(1) $(Z_p)^*$ for large p, (2) Elliptic curve groups mod p

Computing Dlog in $(Z_p)^*$

(n-bit prime p)

Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

cipher key sizemodulus sizeElliptic Curve80 bits1024 bits160 bits128 bits3072 bits256 bits256 bits (AES)15360 bits512 bits

As a result: slow transition away from (mod p) to elliptic curves