CIS 5560

Cryptography Lecture 12

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- Final Exam May 10, 2024, 9-11AM, DRLB A2
- HW6 out later today, due in 2 weeks (Tuesday 3/12)

Recap of last lecture

Goals

An authenticated encryption system (Gen, Enc, Dec) is a cipher where

As usual: Enc : $\mathscr{K} \times \mathscr{M} \rightarrow \mathscr{E}_{\{\perp\}}$
but
Dec: $\mathscr{K} \times \mathscr{C} \rightarrow \mathscr{M} \uparrow$

Security: the system must provide
ciphertext is rejected

- IND-CPA, and
- ciphertext integrity:
attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let (Gen, Enc, Dec) be a cipher with message space \mathscr{M}.

Def: (Gen, Enc, Dec) has ciphertext integrity if for all PPT A :

$$
\operatorname{Adv}_{\text {CI }}[A]=\operatorname{Pr}[b=1]=\operatorname{neg} \mid(\lambda)
$$

Chosen ciphertext security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge
(conservative modeling of real life)

Adversary's goal:
Learn partial information about challenge plaintext

Chosen ciphertext security: definition

Let (Gen, Enc, Dec) be a cipher with message space \mathscr{M}

Challenger $\begin{aligned} & k \leftarrow \operatorname{Gen}\left(1^{\lambda}\right) \\ & b \leftarrow\{0,1\} \end{aligned}$	for $i \in\{1, \ldots, q\}:$(1) $\mathbf{C P A}$ query: $m_{i, 0}, m_{i, 1} \in \mathscr{M}:\left\|m_{i, 0}\right\|=\mid m_{i, 1}$$c_{i} \leftarrow \operatorname{Enc}\left(k, m_{i, b}\right)$ (2) CCA query: $c_{j} \in \mathscr{C}: c_{j} \notin\left\{c_{1}, \ldots, c_{i}\right\}$ $m_{j} \leftarrow \mathrm{D}\left(k, c_{j}\right): m_{j} \in \mathscr{M} \cup\{$	Adversary

Authenticated enc. \Rightarrow CCA security

Thm: Let (E, D) be a cipher that provides AE . Then (E, D) is CCA secure !

In particular, for any q-query eff. A there exist eff. B_{1}, B_{2} s.t.

$$
\operatorname{Adv}_{\mathrm{CCA}}[\mathrm{~A}, \mathrm{E}] \leq 2 \mathrm{q} \cdot \operatorname{Adv}_{\mathrm{CI}}\left[\mathrm{~B}_{1}, \mathrm{E}\right]+\operatorname{Adv}_{\mathrm{CPA}}\left[\mathrm{~B}_{2}, \mathrm{E}\right]
$$

Combining MAC and ENC (CCA)

Encryption key $k_{E} . \quad$ MAC key $=k_{M}$

always correct

Option 2: (IPsec) msg m

Security of Encrypt-then-MAC

Today's Lecture

- Number Theory refresher
- Arithmetic modulo primes
- Fermat's Little Theorem
- Quadratic residuosity
- Discrete Logarithms
- Arithmetic modulo composites
- Euler's Theorem
- Factoring

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced at end of module

Notation

From here on:

- N denotes a positive integer.
- p denote a prime.

Notation: $\mathbb{Z}_{N}=\{0,1, \ldots, N-1\}$

Can do addition and multiplication modulo N

Greatest common divisor

Def: For all $x, y \in \mathbb{Z}, \operatorname{gcd}(x, y)$ is the greatest common divisor of x, y
Example: $\quad \operatorname{gcd}(12,18)=6$

Fact: for all $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that $a \cdot x+b \cdot y=\operatorname{gcd}(x, y)$
a, b can be found efficiently using the extended Euclid algorithm

If $\operatorname{gcd}(x, y)=1$, we say that x and y are relatively prime

Modular inversion

Over the rationals, inverse of 2 is $1 / 2$. What about \mathbb{Z}_{N} ?

Def: The inverse of $x \in \mathbb{Z}_{N}$ is an element $y \in \mathbb{Z}_{N}$ s.t.

$$
x \cdot y=1 \bmod N
$$

y is denoted x^{-1}.

Example: let N be an odd integer. What is the inverse of $2 \bmod N$?

Modular inversion

Which elements have an inverse in \mathbb{Z}_{N} ?

Lemma: $\quad x \in \mathbb{Z}_{N}$ has an inverse if and only if $\operatorname{gcd}(x, N)=1$
Proof:

$$
\begin{aligned}
\operatorname{gcd}(x, N)=1 & \Longrightarrow \exists a, b: a \cdot x+b \cdot N=1 \\
& \Longrightarrow a \cdot x=1 \bmod N \\
\operatorname{gcd}(x, N) \neq 1 & \Rightarrow \forall \mathrm{a}: \operatorname{gcd}(\mathrm{a} \cdot \mathrm{x}, \mathrm{~N})>1 \quad \Rightarrow \quad \mathrm{a} \cdot \mathrm{x} \neq 1 \text { in }
\end{aligned}
$$

Invertible elements

Def: $\quad \mathbb{Z}_{N}^{*}=$ set of invertible elements in \mathbb{Z}_{N}

$$
=\left\{x \in \mathbb{Z}_{N}: \operatorname{gcd}(x, N)=1\right\}
$$

Examples:

1. for prime $p, \mathbb{Z}_{p}^{*}:=\{0, \ldots, p-1\}$
2.

$$
\mathbb{Z}_{12}^{*}:=\{1,5,7,11\}
$$

For $x \in \mathbb{Z}_{N}$, we can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve: $\quad a \cdot x+b=0$, where $a, x, b \in \mathbb{Z}_{N}$
Solution: $\quad x=-b \cdot a^{-1} \bmod N$

Find a^{-1} using extended Euclid algorithm.
Run time: $\mathrm{O}\left(\log ^{2} \mathrm{~N}\right)$

Fermat's theorem
 (1640)

Thm: Let p be a prime. Then,

$$
\forall x \in \mathbb{Z}_{p}^{*}: x^{p-1}=1 \bmod p
$$

Example: $\mathrm{p}=5 . \quad 3^{4}=81=1 \quad$ in Z_{5}

How can we use this to compute inverses?

$$
x \in \mathbb{Z}_{p}^{*} \Rightarrow x \cdot x^{p-2}=1 \Rightarrow x^{-1}=x^{p-2}
$$

(less efficient than Euclid)

Application: generating random primes

Suppose we want to generate a large random prime
say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: sample $p \in\left[2^{1024}, 2^{1025}-1\right]$
Step 2: test if $2^{p-1}=1 \bmod p$
If so, output p and stop. If not, goto step 1 .

Simple algorithm (not the best). $\operatorname{Pr}[p \notin$ PRIMES \mid test passes $]<2^{-60}$

The structure of \mathbb{Z}_{p}^{*}

Thm (Euler): $\quad \mathbb{Z}_{p}^{*}$ is a cyclic group, that is

$$
\exists g \in \mathbb{Z}_{p}^{*} \text { such that }\left\{1, g, g^{2}, g^{3}, \ldots, g^{p-2}\right\}=\mathbb{Z}_{p}^{*}
$$

g is called a generator of \mathbb{Z}_{p}^{*}

Example: $\quad p=7 . \quad\left\{1,3,3^{2}, 3^{3}, 3^{4}, 3^{5}\right\}=\{1,3,2,6,4,5\}=\mathbb{Z}_{7}^{*}$
Not every elem. is a generator:

$$
\left\{1,2,2^{2}, 2^{3}, 2^{4}, 2^{5}\right\}=\{1,2,4\}
$$

Order

For $g \in \mathbb{Z}_{p}^{*}$ the set $\left\{1, g, g^{2}, g^{3}, \ldots\right\}$ is called

$$
\text { the group generated by } \mathbf{g}, \text { denoted }\langle g\rangle
$$

Def: the order of $g \in \mathbb{Z}_{p}^{*}$ is the size of $\langle g\rangle$

$$
\operatorname{crd}_{\mathrm{p}}(\mathbf{g})=|\langle g\rangle|=\left(\text { smallest } \mathbf{a}>0 \text { s.t. } g^{a}=1 \bmod p\right)
$$

Examples: $\quad \operatorname{ord}_{7}(3)=6 \quad ; \quad \operatorname{ord}_{7}(2)=3 ; \operatorname{ord}_{7}(1)=1$

Thm (Lagrange): $\forall \mathrm{g} \in\left(\mathrm{Z}_{\mathrm{p}}\right)^{*}: \quad \operatorname{ord}_{\mathrm{p}}(\mathrm{g})$ divides $\mathrm{p}-1$

How to come up with a generator g

(1) There are lots of generators: $\approx 1 / \log n$ fraction
of \mathbb{Z}_{p}^{*} are generators (where p is an n -bit prime).
(2) Testing if g is a generator:

Theorem: let q_{1}, \ldots, q_{k} be the prime factors of $p-1$.
Then, g is a generator of $\underline{\mathbb{Z}}_{p}^{*}$ if and only if
$g^{(p-1) / q_{i}} \neq 1(\bmod p)$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of $\mathrm{p}-1$?
OPEN: Deterministically come up with a generator?

The Multiplicative Group \mathbb{Z}_{p}^{*}

$\mathbb{Z}_{p}^{*}:(\{1, \ldots, \mathrm{p}-1\}$, group operation: $\bullet \bmod p)$

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_{p}^{*}$ and $x \in \mathbb{Z}_{p-1}$, find $g^{x} \bmod$ p) is easy: Repeated Squaring Algorithm.
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_{p}^{*}$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h=g^{x} \bmod \mathrm{p}$) is hard, to the best of our knowledge!

The Discrete Log Assumption

> The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_{p}^{*}$, find $x \in \mathbb{Z}_{p-1}$ s.t. $\mathrm{h}=g^{x} \bmod \mathrm{p}$.

Distributions...

1. Is the discrete log problem hard for a random p ?

Could it be easy for some p?
2. Given p : is the problem hard for all generators g ?
3. Given p and g : is the problem hard for all x ?

Random Self-Reducibility of DLOG

$$
\begin{aligned}
& \text { Theorem: If there is an p.p.t. algorithm } A \text { s.t. } \\
& \qquad \operatorname{Pr}\left[A\left(p, g, g^{x} \bmod p\right)=x\right]>1 / \operatorname{poly}(\log p) \\
& \text { for some } p \text {, random generator } g \text { of } \mathbb{Z}_{p}^{*} \text {, and random } x \text { in } \mathbb{Z}_{p-1} \text {, } \\
& \text { then there is a p.p.t. algorithm } B \text { s.t. } \\
& B\left(p, g, g^{x} \bmod p\right)=x \\
& \text { for all } \mathrm{g} \text { and } \mathrm{x} \text {. }
\end{aligned}
$$

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

$$
\operatorname{Pr}\left[A\left(p, g, g^{x} \bmod p\right)=x\right]>1 / \operatorname{poly}(\log p)
$$

for some p, random generator g of \mathbb{Z}_{p}^{*}, and random x in \mathbb{Z}_{p-1}, then there is a p.p.t. algorithm B s.t.
$B\left(p, g, g^{x} \bmod p\right)=x$ for all g and x .
2. Given p : is the problem hard for all generators g ?
\ldots as hard for any generator is it for a random one.
3. Given p and g : is the problem hard for all x ?
... as hard for any \mathbf{x} is it for a random one.

Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time -and space- $O(\sqrt{p})$.
- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. $p-1$ in the case of $\left.Z_{p}^{*}\right)$. That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm \underline{A}, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{l}
p \leftarrow P R I M E S_{n} ; g \leftarrow G E N\left(\mathbb{Z}_{p}^{*}\right) ; \\
x \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x} \bmod p\right)=x
\end{array}\right]=\mu(n)
$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a Sophie-Germain prime if $p=2 q+1$ is also prime. In this case, q is called a safe prime.
- Safe primes are maximally hard for the PohligHellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C / n^{2} of n-bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the "safe prime" version)

W.r.t. a random safe prime: for every p.p.t. algorithm \underline{A}, there is a negligible function $\underline{\mu}$ s.t.

$$
\left.\operatorname{Pr}\left[\begin{array}{l}
p \leftarrow S A F E P R I M E S_{n} ; g \leftarrow G E N\left(\mathbb{Z}_{p}^{*}\right) ; \\
x \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x} \bmod p\right)=x
\end{array}\right]=\mu(n)\right]
$$

One-way Permutation (Family)

$$
\begin{gathered}
F(p, g, x)=\left(p, g, g^{x} \bmod \mathrm{p}\right) \\
\mathscr{F}_{n}=\left\{F_{n, p, g}\right\} \text { where } F_{n, p, g}(x)=\left(p, g, g^{x} \bmod \mathrm{p}\right)
\end{gathered}
$$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathscr{F}_{n} is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm \underline{A}, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[\begin{array}{l}
p \leftarrow P R I M E S_{n} ; g \leftarrow G E N\left(\mathbb{Z}_{p}^{*}\right) ; \\
x, y \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^{x}, g^{y}\right)=g^{x y}
\end{array}\right]=\mu(n)
$$

CDH

DLOG: more generally

Let \mathbb{G} be a finite cyclic group and g a generator of \mathbb{G}

$$
\mathbb{G}=\left\{1, g, g^{2}, g^{3}, \ldots, g^{q-1}\right\} \quad(q \text { is called the order of } G)
$$

Def: We say that DLOG is hard in G if for all efficient alg. A:

$$
\operatorname{Pr}_{g \leftarrow G, x \leftarrow Z_{q}}\left[A\left(G, q, g, g^{x}\right)=x\right]<\text { negligible }
$$

Example candidates:
(1) $\left(Z_{p}\right)^{*}$ for large p,
(2) Elliptic curve groups mod p

Computing Dlog in $\left(Z_{\mathrm{p}}\right)^{*} \quad$ (n-bit primep)

cipher key size 80 bits
128 bits
256 bits (AES)

modulus size 1024 bits 3072 bits
15360 bits

Elliptic Curve group size 160 bits 256 bits
512 bits

As a result: slow transition away from $(\bmod p)$ to elliptic curves

An application: collision resistance

Choose a group G where Dog is hard (e.g. $\left(Z_{p}\right)^{*}$ for large p)
Let $\mathrm{q}=|\mathrm{G}|$ be a prime. Choose generators g , h of G

$$
\text { For } x, y \in\{1, \ldots, q\} \quad \text { define } \quad H(x, y)=g^{x} \cdot h^{y} \quad \text { in } G
$$

Lemma: finding collision for $\mathrm{H}(.,$.$) is as hard as computing$ Dog $_{g}(\mathrm{~h})$
Proof: Suppose we are given a collision $H\left(x_{0}, y_{0}\right)=H\left(x_{1}, y_{1}\right)$
then

$$
\mathrm{g}^{\mathrm{X}_{0}} \cdot \mathrm{~h}^{\mathrm{Y}_{0}}=\mathrm{g}^{\mathrm{X}_{1}} \cdot \mathrm{~h}^{\mathrm{Y}_{1}} \quad \Rightarrow
$$

$$
\mathrm{g}^{\mathrm{x}_{0}-\mathrm{X}_{1}}=\mathrm{h}^{\mathrm{y}_{1}-\mathrm{y}_{0}}
$$

$$
\Rightarrow \quad h=g^{x_{0}-x_{1} / y_{1 z} \times 0}
$$

Further reading

- A Computational Introduction to Number Theory and Algebra, V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at //shoup.net/ntb/ntb-v2.pdf

