CIS 5560

Cryptography Lecture 12

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- Final Exam May 10, 2024, 9-11AM, DRLB A2
- HW6 out later today, due in 2 weeks (Tuesday 3/12)

Recap of last lecture

Goals

An authenticated encryption system (Gen, Enc, Dec) is a cipher where

As usual: Enc :
$$\mathscr{K} \times \mathscr{M} \to \mathscr{C}_{L}$$

but Dec : $\mathscr{K} \times \mathscr{C} \to \mathscr{M}$
ty: the system must provide

Security: the system must provide

- IND-CPA, and •
- ciphertext integrity: •

attacker cannot create new ciphertexts that decrypt properly

Ciphertext integrity

Let (Gen, Enc, Dec) be a cipher with message space \mathcal{M} .

Def: (Gen, Enc, Dec) has <u>ciphertext integrity</u> if for all PPT A: $Adv_{CI}[A] = Pr[b = 1] = negl(\lambda)$

Chosen ciphertext security

Adversary's power: both CPA and CCA

- Can obtain the encryption of arbitrary messages of his choice
- Can decrypt any ciphertext of his choice, other than challenge

(conservative modeling of real life)

Adversary's goal:

Learn partial information about challenge plaintext

Chosen ciphertext security: definition

Let (Gen, Enc, Dec) be a cipher with message space \mathcal{M}

for $i \in \{1, ..., q\}$: Adversary Challenger $k \leftarrow \text{Gen}(1^{\lambda})$ (1) **CPA query:** $m_{i,0}, m_{i,1} \in \mathcal{M} : |m_{i,0}| = |m_{i,1}|$ $b \leftarrow \{0,1\}$ $c_i \leftarrow \operatorname{Enc}(k, m_{i\,b})$ **CCA** query: $\underline{c_i \in \mathscr{C}} : c_j \notin \{c_1, \dots, c_i\}$ $b' \in \{0,1\}$ $m_i \leftarrow \mathsf{D}(k, c_i) : m_i \in \mathscr{M} \cup \{\downarrow\}$

Authenticated enc. \Rightarrow CCA security

<u>**Thm</u>**: Let (E,D) be a cipher that provides AE. Then (E,D) is CCA secure !</u>

In particular, for any q-query eff. A there exist eff. $\mathsf{B}_1,\,\mathsf{B}_2$ s.t.

 $Adv_{CCA}[A,E] \le 2q \cdot Adv_{CI}[B_1,E] + Adv_{CPA}[B_2,E]$

Security of Encrypt-then-MAC

Today's Lecture

- Number Theory refresher
 - Arithmetic modulo primes
 - Fermat's Little Theorem
 - Quadratic residuosity
 - Discrete Logarithms

- Arithmetic modulo composites
- Euler's Theorem
- Factoring

Background

We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup's book referenced at end of module

Notation

From here on:

- *N* denotes a positive integer.
- *p* denote a prime.

Notation:
$$\mathbb{Z}_N = \{0, 1, ..., N - 1\}$$

Can do addition and multiplication modulo N

Greatest common divisor

<u>Def</u>: For all $x, y \in \mathbb{Z}$, gcd(x, y) is the <u>greatest common divisor</u> of x, y

Example: gcd(12,18) = 6

Fact: for all
$$x, y \in \mathbb{Z}$$
, there exist $a, b \in \mathbb{Z}$ such that $a \cdot x + b \cdot y = \gcd(x, y)$

a, *b* can be found efficiently using the extended Euclid algorithm

If gcd(x, y) = 1, we say that x and y are <u>relatively prime</u>

Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N ?

Def: The **inverse** of
$$x \in \mathbb{Z}_N$$
 is an element $y \in \mathbb{Z}_N$ s.t.
 $x \cdot y = 1 \mod N$
y is denoted x^{-1} .

Example: let N be an odd integer. What is the inverse of $2 \mod N$?

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

Lemma: $x \in \mathbb{Z}_N$ has an inverse if and only if gcd(x, N) = 1Proof: $gcd(x, N) = 1 \implies \exists a, b : a \cdot x + b \cdot N = 1$

$$gcd(x, N) = 1 \implies \exists a, b : a \cdot x + b \cdot N = 1$$
$$\implies a \cdot x = 1 \mod N$$

 $gcd(x, N) \neq 1 \Rightarrow \forall a: gcd(a \cdot x, N) > 1 \Rightarrow a \cdot x \neq 1$ in

Invertible elements

Def:
$$\mathbb{Z}_N^* = \text{set of invertible elements in } \mathbb{Z}_N$$

= { $x \in \mathbb{Z}_N : \gcd(x, N) = 1$ }

Examples:

1. for prime
$$p, \mathbb{Z}_p^* := \{0, ..., p-1\}$$

2. $\mathbb{Z}_{12}^* := \{1, 5, 7, 11\}$

For $x \in \mathbb{Z}_N$, we can find x^{-1} using extended Euclid algorithm.

Solving modular linear equations

Solve:
$$a \cdot x + b = 0$$
, where $a, x, b \in \mathbb{Z}_N$
Solution: $x = -b \cdot a^{-1} \mod N$

Find a^{-1} using extended Euclid algorithm. Run time: O(log² N)

Fermat's theorem (1640)

<u>Thm</u>: Let p be a prime. Then,

$$\forall x \in \mathbb{Z}_p^* : x^{p-1} = 1 \mod p$$

Example:
$$p=5$$
. $3^4 = 81 = 1$ in Z_5

How can we use this to compute inverses?

$$x \in \mathbb{Z}_p^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2}$$

(less efficient than Euclid)

Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

- Step 1: sample $p \in [2^{1024}, 2^{1025} 1]$
- Step 2: test if $2^{p-1} = 1 \mod p$

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best). $\Pr[p \notin \text{PRIMES} \mid \text{test passes} \mid < 2^{-60}$

The structure of \mathbb{Z}_p^*

<u>Thm</u> (Euler): \mathbb{Z}_p^* is a **cyclic group**, that is

$$\exists g \in \mathbb{Z}_p^* \text{ such that } \{1, g, g^2, g^3, ..., g^{p-2}\} = \mathbb{Z}_p^*$$

g is called a **generator** of \mathbb{Z}_p^*

Example: p = 7. {1, 3, 3², 3³, 3⁴, 3⁵} = {1, 3, 2, 6, 4, 5} = \mathbb{Z}_7^*

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Order

For
$$g \in \mathbb{Z}_p^*$$
 the set $\{1, g, g^2, g^3, ...\}$ is called

the group generated by g, denoted $\langle g \rangle$

<u>Def</u>: the order of $g \in \mathbb{Z}_p^*$ is the size of $\langle g \rangle$

 $\operatorname{ord}_{p}(g) = |\langle g \rangle| = (\operatorname{smallest} a > 0 \text{ s.t. } g^{a} = 1 \mod p)$

Examples: $ord_7(3) = 6$; $ord_7(2) = 3$; $ord_7(1) = 1$

<u>Thm</u> (Lagrange): $\forall g \in (Z_p)^*$: ord_p(g) divides p - 1

How to come up with a generator g

(1) There are lots of generators: $\approx 1/\log n$ fraction of \mathbb{Z}_p^* are generators (where p is an n-bit prime).

(2) Testing if g is a generator:

<u>Theorem</u>: let $\underline{q}_1, \ldots, \underline{q}_k$ be the prime factors of $\underline{p-1}$. Then, g is a generator of \mathbb{Z}_p^* if and only if $\underline{g}^{(p-1)/q_i} \neq 1 \pmod{p}$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of p-1?

OPEN: Deterministically come up with a generator?

The Multiplicative Group \mathbb{Z}_p^*

 \mathbb{Z}_p^* : ({1,..., p - 1}, group operation: • mod *p*)

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given g ∈ Z^{*}_p and x ∈ Z_{p-1}, find g^x mod
 p) is easy: Repeated Squaring Algorithm.
- The discrete logarithm problem (given a generator g and h ∈ Z^{*}_p, find x ∈ Z_{p-1} s.t. h = g^x mod p) is hard, to the best of our knowledge!

The Discrete Log Assumption

The discrete logarithm problem is: given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \mod p$.

Distributions...

- 1. Is the discrete log problem hard for a random p? Could it be easy for some p?
- 2. Given p: is the problem hard for all generators g?
- 3. Given p and g: is the problem hard for all x?

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm *A* s.t. $Pr\left[A\left(p, g, g^x \mod p\right) = x\right] > 1/poly(\log p)$ for some *p*, random generator *g* of \mathbb{Z}_p^* , and random *x* in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm *B* s.t. $B\left(p, g, g^x \mod p\right) = x$ for all g and x.

Proof: On the board.

Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm *A* s.t. $Pr\left[A\left(p, g, g^x \mod p\right) = x\right] > 1/poly(\log p)$ for some *p*, random generator *g* of \mathbb{Z}_p^* , and random *x* in \mathbb{Z}_{p-1} , then there is a p.p.t. algorithm *B* s.t. $B\left(p, g, g^x \mod p\right) = x$ for all g and x.

2. Given p: is the problem hard for all generators g?

... as hard for any generator is it for a random one.

3. Given p and g: is the problem hard for all x?

... as hard for any x is it for a random one.

Algorithms for Discrete Log (for General Groups)

• Baby Step-Giant Step algorithm: time $-and space - O(\sqrt{p})$.

• Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. p - 1 in the case of Z_p^*). That is, there are dlog-easy primes.

The Discrete Log (DLOG) Assumption

<u>W.r.t. a random prime</u>: for every p.p.t. algorithm <u>A</u>, there is a negligible function $\underline{\mu}$ s.t.

$$\Pr\begin{bmatrix}p \leftarrow PRIMES_n; g \leftarrow GEN(\mathbb{Z}_p^*);\\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \mod p) = x\end{bmatrix} = \mu(n)$$

Sophie-Germain Primes and Safe Primes

- A prime q is called a **Sophie-Germain** prime if p = 2q + 1 is also prime. In this case, q is called a **safe prime**.
- Safe primes are maximally hard for the Pohlig-Hellman algorithm.
- It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C/n² of n-bit integers seem to be safe primes (for some constant C).

The Discrete Log (DLOG) Assumption

(the "safe prime" version)

<u>W.r.t. a random safe prime</u>: for every p.p.t. algorithm <u>A</u>, there is a negligible function $\underline{\mu}$ s.t.

$$\Pr\left[\begin{aligned} p \leftarrow SAFEPRIMES_n; g \leftarrow GEN\left(\mathbb{Z}_p^*\right); \\ x \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^x \bmod p\right) = x \end{aligned} \right] = \mu(n)$$

One-way Permutation (Family)

$$F(p, g, x) = (p, g, g^x \bmod p)$$

$$\mathcal{F}_n = \{F_{n,p,g}\}$$
 where $F_{n,p,g}(x) = (p, g, g^x \mod p)$

Theorem: Under the discrete log assumption, F is a one-way permutation (resp. \mathscr{F}_n is a one-way permutation family).

Computational Diffie-Hellman (CDH) Assumption

 $\frac{\text{W.r.t. a random prime: for every p.p.t. algorithm A,}}{\text{there is a negligible function }\mu \text{ s.t.}}$ $\Pr\left[\begin{array}{l} p \leftarrow PRIMES_n; g \leftarrow GEN\left(\mathbb{Z}_p^*\right); \\ x, y \leftarrow \mathbb{Z}_{p-1}: A\left(p, g, g^x, g^y\right) = g^{xy} \end{array} \right] = \mu(n)$

DLOG: more generally

Let \mathbb{G} be a finite cyclic group and g a generator of \mathbb{G}

$$G = \{ 1, g, g^2, g^3, \dots, g^{q-1} \}$$
 (q is called the order of G)

<u>Def</u>: We say that **DLOG is hard in G** if for all efficient alg. A:

$$Pr_{g \leftarrow G, x \leftarrow Z_q} \left[A(G, q, g, g^x) = x \right] < negligible$$

Example candidates:

(1) $(Z_p)^*$ for large p, (2) Elliptic curve groups mod p

Computing Dlog in $(Z_p)^*$

(n-bit prime p)

Best known algorithm (GNFS): run time exp($\tilde{O}(\sqrt[3]{n})$)

cipher key sizemodulus sizeElliptic Curve80 bits1024 bits160 bits128 bits3072 bits256 bits256 bits (AES)15360 bits512 bits

As a result: slow transition away from (mod p) to elliptic curves

An application: collision resistance

Choose a group G where Dlog is hard (e.g. $(Z_p)^*$ for large p)

Let q = |G| be a prime. Choose generators g, h of G

For $x,y \in \{1,...,q\}$ define

$$H(x,y) = g^x \cdot h^y$$
 in G

Lemma: finding collision for H(.,.) is as hard as computing $Dlog_{a}(h)$

Proof: Suppose we are given a collision $H(x_0,y_0) = H(x_1,y_1)$

then $\mathbf{g}^{\mathbf{x}_0} \cdot \mathbf{h}^{\mathbf{y}_0} = \mathbf{g}^{\mathbf{x}_1} \cdot \mathbf{h}^{\mathbf{y}_1} \Rightarrow \mathbf{g}^{\mathbf{x}_0 - \mathbf{x}_1} = \mathbf{h}^{\mathbf{y}_1 - \mathbf{y}_0} \Rightarrow \mathbf{h} = \mathbf{g}^{\mathbf{x}_0 - \mathbf{x}_1} / \mathbf{y}_{1\overline{3}} \mathbf{y}_0$

Further reading

- A Computational Introduction to Number Theory and Algebra,
 - V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at //shoup.net/ntb/ntb-v2.pdf