CIS 5560

Cryptography
Lecture 12

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan
Announcements

• Final Exam May 10, 2024, 9-11AM, DRLB A2
• HW6 out later today, due in 2 weeks (Tuesday 3/12)
Recap of last lecture
An **authenticated encryption** system (Gen, Enc, Dec) is a cipher where

As usual: \(\text{Enc} : \mathcal{K} \times \mathcal{M} \rightarrow \mathcal{C} \)

but \(\text{Dec} : \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{M} \)

Security: the system must provide

- IND-CPA, and

- **ciphertext integrity**: attacker cannot create new ciphertexts that decrypt properly
Ciphertext integrity

Let \((\text{Gen}, \text{Enc}, \text{Dec})\) be a cipher with message space \(\mathcal{M}\).

\[
\begin{align*}
\text{Chal.} & \quad k \leftarrow \text{Gen}(1^\lambda) \\
& \quad m_1 \in \mathcal{M} \quad m_2, \ldots, m_q \\
& \quad c_1 \leftarrow \text{Enc}(k, m_1) \quad c_2, \ldots, c_q \\
& \quad c \\
\text{Adv.} & \quad \quad b \quad \begin{cases}
 b = 1 & \text{if } \text{Dec}(k, c) \neq \bot \quad \text{and} \quad c \notin \{c_1, \ldots, c_q\} \\
 b = 0 & \text{otherwise}
\end{cases}
\end{align*}
\]

Def: \((\text{Gen}, \text{Enc}, \text{Dec})\) has **ciphertext integrity** if for all PPT \(A\):

\[
\text{Adv}_{\text{CI}}[A] = \Pr[b = 1] = \text{negl}(\lambda)
\]
Chosen ciphertext security

Adversary’s power: both CPA and CCA
• Can obtain the encryption of arbitrary messages of his choice
• Can decrypt any ciphertext of his choice, other than challenge
 (conservative modeling of real life)

Adversary’s goal:
Learn partial information about challenge plaintext
Chosen ciphertext security: definition

Let \((\text{Gen}, \text{Enc}, \text{Dec})\) be a cipher with message space \(\mathcal{M}\)

Challenger

\[
\begin{align*}
 k & \leftarrow \text{Gen}(1^\lambda) \\
 b & \leftarrow \{0, 1\}
\end{align*}
\]

for \(i \in \{1, \ldots, q\}\):

1. **CPA query:**

 \[
 m_{i,0}, m_{i,1} \in \mathcal{M} : |m_{i,0}| = |m_{i,1}|
 \]

 \[c_i \leftarrow \text{Enc}(k, m_{i,b})\]

2. **CCA query:**

 \[
 c_j \in \mathcal{C} : c_j \notin \{c_1, \ldots, c_i\}
 \]

 \[m_j \leftarrow \text{D}(k, c_j) : m_j \in \mathcal{M} \cup \{\perp\}\]

Adversary

\[b' \in \{0, 1\}\]
Authenticated enc. ⇒ CCA security

Thm: Let \((E,D)\) be a cipher that provides AE.
Then \((E,D)\) is CCA secure!

In particular, for any \(q\)-query eff. A there exist eff. \(B_1, B_2\) s.t.

\[
\text{Adv}_{\text{CCA}}[A,E] \leq 2q \cdot \text{Adv}_{\text{CIA}}[B_1,E] + \text{Adv}_{\text{CPA}}[B_2,E]
\]
Combining MAC and ENC (CCA)

Encryption key \(k_E \). MAC key = \(k_M \)

Option 1: (SSL) \(\text{msg} \ m \) \(\rightarrow \) \(\text{msg} \ m \) \(\text{tag} \ t \) \(\rightarrow \) \(\text{Enc}(k_E, m \ | \ | t) \)

always correct

Option 2: (IPsec) \(\text{msg} \ m \) \(\rightarrow \) \(\text{Enc}(k_E, m) \) \(\rightarrow \) \(\text{MAC}(k_M, c) \) \(\rightarrow \) \(\text{tag} \ t \)

Option 3: (SSH) \(\text{msg} \ m \) \(\rightarrow \) \(\text{Enc}(k_E, m) \) \(\rightarrow \) \(\text{MAC}(k_M, m) \) \(\rightarrow \) \(\text{tag} \ t \)
Security of Encrypt-then-MAC
Today's Lecture

• Number Theory refresher
 • Arithmetic modulo primes
 • Fermat's Little Theorem
 • Quadratic residuosity
 • Discrete Logarithms

• Arithmetic modulo composites
• Euler's Theorem
• Factoring
We will use a bit of number theory to construct:

- Key exchange protocols
- Digital signatures
- Public-key encryption

This module: crash course on relevant concepts

More info: read parts of Shoup’s book referenced at end of module
Notation

From here on:

• N denotes a positive integer.
• p denote a prime.

Notation: $\mathbb{Z}_N = \{0,1,\ldots,N-1\}$

Can do addition and multiplication modulo N
Greatest common divisor

Def: For all $x, y \in \mathbb{Z}$, $\text{gcd}(x, y)$ is the greatest common divisor of x, y

Example: $\text{gcd}(12, 18) = 6$

Fact: for all $x, y \in \mathbb{Z}$, there exist $a, b \in \mathbb{Z}$ such that

$$a \cdot x + b \cdot y = \text{gcd}(x, y)$$

a, b can be found efficiently using the extended Euclid algorithm

If $\text{gcd}(x, y) = 1$, we say that x and y are relatively prime
Modular inversion

Over the rationals, inverse of 2 is $\frac{1}{2}$. What about \mathbb{Z}_N?

Def: The inverse of $x \in \mathbb{Z}_N$ is an element $y \in \mathbb{Z}_N$ s.t.

$$x \cdot y = 1 \mod N$$

y is denoted x^{-1}.

Example: let N be an odd integer. What is the inverse of $2 \mod N$?
Modular inversion

Which elements have an inverse in \mathbb{Z}_N?

Lemma: $x \in \mathbb{Z}_N$ has an inverse if and only if $\gcd(x, N) = 1$

Proof:

\[
gcd(x, N) = 1 \implies \exists a, b : a \cdot x + b \cdot N = 1
\]

\[
\implies a \cdot x = 1 \mod N
\]

\[
gcd(x, N) \neq 1 \implies \forall a: \gcd(a \cdot x, N) > 1 \implies a \cdot x \neq 1 \text{ in } \mathbb{Z}_N
Invertible elements

Def: \(\mathbb{Z}_N^* \) = set of invertible elements in \(\mathbb{Z}_N \)

\[= \{ x \in \mathbb{Z}_N : \gcd(x, N) = 1 \} \]

Examples:

1. for prime \(p \), \(\mathbb{Z}_p^* := \{ 0, \ldots, p - 1 \} \)
2. \(\mathbb{Z}_{12}^* := \{ 1, 5, 7, 11 \} \)

For \(x \in \mathbb{Z}_N \), we can find \(x^{-1} \) using extended Euclid algorithm.
Solving modular linear equations

Solve: \(a \cdot x + b = 0 \), where \(a, x, b \in \mathbb{Z}_N \)

Solution: \(x = -b \cdot a^{-1} \mod N \)

Find \(a^{-1} \) using extended Euclid algorithm.

Run time: \(O(\log^2 N) \)
Fermat’s theorem \((1640)\)

Thm: Let \(p\) be a prime. Then,

\[\forall x \in \mathbb{Z}_p^* : x^{p-1} = 1 \mod p \]

Example: \(p=5\). \(3^4 = 81 = 1 \mod 5\) in \(\mathbb{Z}_5\)

How can we use this to compute inverses?

\[x \in \mathbb{Z}_p^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \]

(less efficient than Euclid)
Application: generating random primes

Suppose we want to generate a large random prime

say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: sample $p \in [2^{1024}, 2^{1025} - 1]$

Step 2: test if $2^{p-1} = 1 \mod p$

If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best).

$\Pr[p \not\in \text{PRIMES} \mid \text{test passes}] < 2^{-60}$
The structure of \mathbb{Z}_p^*

Thm (Euler): \mathbb{Z}_p^* is a cyclic group, that is

$$\exists g \in \mathbb{Z}_p^* \text{ such that } \{1, g, g^2, g^3, \ldots, g^{p-2}\} = \mathbb{Z}_p^*$$

g is called a **generator** of \mathbb{Z}_p^*

Example: $p = 7$. $\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_7^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$
Order

For \(g \in \mathbb{Z}_p^* \) the set \(\{1, g, g^2, g^3, \ldots \} \) is called the group generated by \(g \), denoted \(\langle g \rangle \).

Def: the order of \(g \in \mathbb{Z}_p^* \) is the size of \(\langle g \rangle \)

\[
\text{ord}_p(g) = |\langle g \rangle| = \text{(smallest } a > 0 \text{ s.t. } g^a = 1 \mod p)\]

Examples: \(\text{ord}_7(3) = 6 \); \(\text{ord}_7(2) = 3 \); \(\text{ord}_7(1) = 1 \)

Thm (Lagrange): \(\forall g \in (\mathbb{Z}_p)^* : \text{ord}_p(g) \) divides \(p - 1 \)
How to come up with a generator g

(1) **There are lots of generators**: $\approx 1/\log n$ fraction of \mathbb{Z}_p^* are generators (where p is an n-bit prime).

(2) **Testing if g is a generator**:

Theorem: let q_1, \ldots, q_k be the prime factors of $p-1$. Then, g is a generator of \mathbb{Z}_p^* if and only if $g^{(p-1)/q_i} \neq 1 \pmod{p}$ for all i.

OPEN: Can you test if g is a generator without knowing the prime factorization of $p-1$?

OPEN: Deterministically come up with a generator?
The Multiplicative Group \mathbb{Z}_p^*

\mathbb{Z}_p^*: ($\{1,\ldots, p-1\}$, group operation: $\cdot \mod p$)

- Computing the group operation is easy.
- Computing inverses is easy: Extended Euclid.
- Exponentiation (given $g \in \mathbb{Z}_p^*$ and $x \in \mathbb{Z}_{p-1}$, find $g^x \mod p$) is easy: Repeated Squaring Algorithm.
- The discrete logarithm problem (given a generator g and $h \in \mathbb{Z}_p^*$, find $x \in \mathbb{Z}_{p-1}$ s.t. $h = g^x \mod p$) is hard, to the best of our knowledge!
The Discrete Log Assumption

The discrete logarithm problem is: given a generator \(g \) and \(h \in \mathbb{Z}_p^* \), find \(x \in \mathbb{Z}_{p-1} \) s.t. \(h = g^x \mod p \).

Distributions...

1. Is the discrete log problem hard for a random \(p \)?
 Could it be easy for some \(p \)?

2. Given \(p \): is the problem hard for all generators \(g \)?

3. Given \(p \) and \(g \): is the problem hard for all \(x \)?
Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.

\[
\Pr\left[A\left(p, g, g^x \mod p\right) = x \right] > \frac{1}{\text{poly}(\log p)}
\]

for some p, random generator g of \mathbb{Z}_p^*, and random x in \mathbb{Z}_{p-1}, then there is a p.p.t. algorithm B s.t.

\[
B\left(p, g, g^x \mod p\right) = x
\]

for all g and x.

Proof: On the board.
Random Self-Reducibility of DLOG

Theorem: If there is an p.p.t. algorithm A s.t.
\[\Pr[A(p, g, g^x \mod p) = x] > 1/{\text{poly}(\log p)} \]
for some p, random generator g of \mathbb{Z}_p^*, and random x in \mathbb{Z}_{p-1}, then there is a p.p.t. algorithm B s.t.
\[B(p, g, g^x \mod p) = x \]
for all g and x.

2. Given p: is the problem hard for all generators g?

 … as hard for any generator is it for a random one.

3. Given p and g: is the problem hard for all x?

 … as hard for any x is it for a random one.
Algorithms for Discrete Log (for General Groups)

- Baby Step-Giant Step algorithm: time —and space— $O(\sqrt{p})$.

- Pohlig-Hellman algorithm: time $O(\sqrt{q})$ where q is the largest prime factor of the order of group (e.g. $p - 1$ in the case of \mathbb{Z}_p^*). That is, there are dlog-easy primes.
The Discrete Log (DLOG) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr \left[\begin{array}{c} p \leftarrow \text{PRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); \\ x \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x \mod p) = x \end{array} \right] = \mu(n)$$
• A prime q is called a **Sophie-Germain** prime if $p = 2q + 1$ is also prime. In this case, q is called a **safe prime**.

• Safe primes are maximally hard for the Pohlig-Hellman algorithm.

• It is unknown if there are infinitely many safe primes, let alone that they are sufficiently dense. Yet, heuristically, about C/n^2 of n-bit integers seem to be safe primes (for some constant C).
The Discrete Log (DLOG) Assumption

(the “safe prime” version)

W.r.t. a random safe prime: for every p.p.t. algorithm \(A \), there is a negligible function \(\mu \) s.t.

\[
\Pr \left[\begin{align*}
 p & \leftarrow \text{SAFEPRIMES}_n; \\
 g & \leftarrow \text{GEN} \left(\mathbb{Z}_p^* \right); \\
 x & \leftarrow \mathbb{Z}_{p-1}: \\
 A \left(p, g, g^x \mod p \right) & = x
\end{align*} \right] = \mu(n)
\]
One-way Permutation (Family)

\[F(p, g, x) = (p, g, g^x \mod p) \]

\[\mathcal{F}_n = \{ F_{n,p,g} \} \text{ where } F_{n,p,g}(x) = (p, g, g^x \mod p) \]

Theorem: Under the discrete log assumption, \(F \) is a one-way permutation (resp. \(\mathcal{F}_n \) is a one-way permutation family).
Computational Diffie-Hellman (CDH) Assumption

W.r.t. a random prime: for every p.p.t. algorithm A, there is a negligible function μ s.t.

$$\Pr \left[p \leftarrow \text{PRIMES}_n; g \leftarrow \text{GEN}(\mathbb{Z}_p^*); x, y \leftarrow \mathbb{Z}_{p-1}: A(p, g, g^x, g^y) = g^{xy} \right] = \mu(n)$$
Let G be a finite cyclic group and g a generator of G

$$G = \{ 1, g, g^2, g^3, \ldots, g^{q-1} \}$$

(q is called the order of G)

Def: We say that **DLOG** is **hard in** G if for all efficient alg. A:

$$\Pr_{g \leftarrow G, x \leftarrow \mathbb{Z}_q} \left[A(G, q, g, g^x) = x \right] < \text{negligible}$$

Example candidates:

(1) $(\mathbb{Z}_p)^*$ for large p, (2) Elliptic curve groups mod p
Computing Dlog in \((\mathbb{Z}_p)^*\)

(n-bit prime p)

Best known algorithm (GNFS):

- **run time**: \(\exp\left(\tilde{O}\left(3\sqrt{n}\right)\right)\)
- **cipher key size**
 - 80 bits
 - 128 bits
 - 256 bits (AES)
- **modulus size**
 - 1024 bits
 - 3072 bits
 - **15360** bits
- **Elliptic Curve group size**
 - 160 bits
 - 256 bits
 - 512 bits

As a result: slow transition away from \((\text{mod } p)\) to elliptic curves
An application: collision resistance

Choose a group G where Dlog is hard (e.g. $(\mathbb{Z}_p)^*$ for large p)

Let $q = |G|$ be a prime. Choose generators g, h of G

For $x, y \in \{1, \ldots, q\}$ define $H(x, y) = g^x \cdot h^y$ in G

Lemma: finding collision for $H(.,.)$ is as hard as computing $\text{Dlog}_{g}(h)$

Proof: Suppose we are given a collision $H(x_0, y_0) = H(x_1, y_1)$

then $g^{x_0} \cdot h^{y_0} = g^{x_1} \cdot h^{y_1} \Rightarrow g^{x_0 - x_1} = h^{y_1 - y_0} \Rightarrow h = g^{x_0 - x_1/y_1 - y_0}$
Further reading

• A Computational Introduction to Number Theory and Algebra,
 V. Shoup, 2008 (V2), Chapter 1-4, 11, 12

Available at //shoup.net/ntb/ntb-v2.pdf