CIS 5560

Cryptography Lecture 10

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

Announcements

- HW 5 out after lecture
 - Due Tuesday, Feb 27 at 1PM on Gradescope
 - Covers MACs,

Recap of last lecture

Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen (1^n) : Produces a key $k \leftarrow \mathcal{K}$.
- MAC(k, m): Outputs a tag t (may be deterministic).
- Ver(k, m, t): Outputs Accept or Reject.

Correctness: Pr[Ver(k, m, MAC(k, m)) = 1] = 1

Security: *Hard to forge.* Intuitively, it should be hard to come up with a new pair (*m*', *t*') such that Ver accepts.

EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

Want: $Pr((m, t) \leftarrow A^{MAC(k, \cdot)}(1^n), Ver(k, m, t) = 1, (m, t) \notin Q)) = negl(n)$. where Q is the set of queries $\left\{ (m_i, t_i) \right\}_i$ that A makes.

Constructing a MAC

Gen(1^{*n*}): Produces a PRF key $k \leftarrow K$. MAC(k, m): Output $f_k(m)$. Ver(k, m, t): Accept if $f_k(m) = t$, reject otherwise.

Security: Our earlier unpredictability lemma about PRFs essentially proves that this is secure!

A Simple Lemma about Unpredictability

Let **F**: $K \times X \longrightarrow Y$ be a pseudorandom function.

- Consider an adversary who requests and obtains $F_k(x_1), ..., F_k(x_q)$ for a polynomial q = q(n).
- Can she predict F_k(x[★]) for some x^{*} of her choosing where x^{*} ∉ {x₁,..., x_q}? How well can she do it?

Lemma: If she succeeds with probability $\frac{1}{2^m} + 1/\text{poly}(n)$, then she broke PRF security.

Construction: encrypted CBC-MAC

raw CBC

Construction: NMAC (nested MAC)

cascade

CMAC (NIST standard)

Variant of CBC-MAC where $key = (k, k_1, k_2)$

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k_1 or k_2)

(Ki, Ki) derived From K

Today's Lecture

- Collision-resistant Hash Functions (CRHFs)
- CRH \rightarrow MACs
 - HMAC

Collision Resistance

Let $H: M \rightarrow T$ be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: H(m₀) = H(m₁) and $m_0 \neq m_1$

A function H is <u>collision resistant</u> if for all efficient algs. A: Adv_{CR}[A,H] = Pr[A outputs collision for H] is "neg".

Example: SHA-256 (outputs 256 bits)

Formal Definition: Collision-Resistant Hash Functions

A compressing family of functions $\mathcal{H} = \{h : \{0,1\}^m \rightarrow \{0,1\}^n\}$ (where m > n) for which it is computationally hard to find collisions.

Def: \mathscr{H} is collision-resistant if for every PPT algorithm A, there is a negligible function μ s.t. $\Pr_{h \leftarrow \mathscr{H}} \left[A \left(1^n, h \right) = \left(x, y \right) : x \neq y, \ h(x) = h \left(y \right) \right] = \mu(n)$

MACs from Collision Resistance

Let MAC be a MAC for short messages over (K,M,T) (e.g. AES) Let H: $M^{big} \rightarrow M$ be a hash function

Def: MAC^{big} = (MAC^{big}, Ver^{big}) over (K, M^{big}, T) as:

 $MAC^{big}(k,m) = S(k,H(m)) ; Ver^{big}(k,m,t) = V(k,H(m),t)$

<u>Thm</u>: If MAC is a secure MAC and H is collision resistant then MAC^{big} is a secure MAC.

Example: $MAC(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance MAC^{big}(k, m) = MAC(k, H(m)) ;

Ver^{big}(k, m, t) = V(k, H(m), t)

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: MAC^{big} is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow MAC(k, m_0)$ step 2: output (m_1, t) as forgery

Collision resistance

Generic birthday attack

Generic attack on C.R. functions

Let $H: M \rightarrow \{0,1\}^n$ be a hash function $(|M| \ge 2^n)$

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_{2^{n/2}}$ (distinct w.h.p)
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

How well will this work?

The birthday paradox

Let $r_1, \ldots, r_n \in \{1, \ldots, B\}$ be IID integers.

<u>**Thm</u></u>: When n \approx \sqrt{B} then \Pr[r_i = r_j | \exists i \neq j] \ge \frac{1}{2}</u>** Proof: (for <u>uniform</u> indep. $r_1, ..., r_n$) $\Pr\left[\exists i \neq j: r_i = r_j\right] = I - \Pr\left[\forall i \neq j: r_i \neq r_j\right] = I - \left(\frac{B-i}{B}\right) \left(\frac{B-2}{B}\right) \cdots \left(\frac{B-n+i}{B}\right) =$ $= 1 - \frac{\pi}{1 + 1} \left(1 - \frac{1}{6} \right) = 1 - \frac{\pi}{1 + 1} e^{-\frac{1}{6}t} = 1 - e^{-\frac{1}{6}t} = 1 - e^{-\frac{1}{6}t} = 1 - e^{-\frac{1}{6}t} = 0.53 - \frac{1}{2}$ $1 - x = e^{-\frac{1}{6}t} = 0.72$

Generic attack

 $H: M \rightarrow \{0,1\}^n$. Collision finding algorithm:

- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_{2^{n/2}}$
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

function	digest <u>size (bits)</u>	<u>Speed (MB/sec)</u>	generic <u>attack time</u>
SHA-1	160	153	280
SHA-256	256	111	2128
SHA-512	512	99	2256
L Whirlpool	512	57	2 256
	function SHA-1 SHA-256 SHA-512 Whirlpool	digest <u>function</u> <u>size (bits)</u> SHA-1 160 SHA-256 256 SHA-512 512 Whirlpool 512	digest functionSize (bits)Speed (MB/sec)SHA-1160153SHA-256256111SHA-51251299Whirlpool51257

* SHA-1 is broken; do not use!

The Merkle-Damgard Paradigm:

Collision resistance: review

Let $H: M \rightarrow T$ be a hash function $(|M| \gg |T|)$

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for <u>short</u> messages, construct C.R. function for <u>long</u> messages

The Merkle-Damgard iterated construction

Given $h: T \times X \longrightarrow T$ (compression function)

we obtain $H: X^{\leq L} \longrightarrow T$. H_i - chaining variables

PB: padding block

1000...0 II msg len 64 bits If no space for PB add another block

Proof on Board

MD collision resistance

Thm: if h is collision resistant then so is H.

Proof: collision on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

Suppose H(M) = H(M). We build collision for h.

$$IV = H_0 , H_1 , \dots , H_t , H_{t+1} = H(M)$$

$$IV = H_0' , H_1' , \dots , H'_r, H'_{r+1} = H(M')$$

$$h(H_t, M_t || PB) = H_{t+1} = H'_{r+1} = h(H'_r, M'_r || PB')$$

$$IV = H_0' + H_1 = H'_{r+1} = h(H'_r, M'_r || PB')$$

Suppose
$$H_t = H'_r$$
 and $M_t = M'_r$ and $PB = PB'$
Then: $h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})$
I $\int \begin{bmatrix} H_{t-1} \neq H'_{t-1} \\ or \\ M_{t-1} \neq M'_{t-1} \end{bmatrix}$ then we have a collision on h. STOP,
 $M_{t-1} \neq M'_{t-1} \end{bmatrix}$ then we have a collision on h. STOP,
Scherbise, $H_{t-1} = H'_{t-1}$ and $M_t = M'_t$ and $M_{t-1} = M'_{t-1}$.
Therale all the way to beginning and either:
 (1) find collision on h, or
 (2) $\forall i : M_i = M'_i \implies M = M'$ are collision
on H.

 \Rightarrow To construct C.R. function,

suffices to construct compression function

End of Segment

Dan Boneh

Collision resistance

Constructing Compression Functions

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Goal: construct compression function $h: T \times X \longrightarrow T$

Compr. func. from a block cipher

E: K× {0,1}ⁿ \longrightarrow **{0,1}**ⁿ a block cipher.

The **Davies-Meyer** compression function: $h(H, m) = E(m, H) \oplus H$

<u>Thm</u>: Suppose E is an ideal cipher (collection of |K| random perms.). Finding a collision **h(H,m)=h(H',m')** takes **O(2**^{n/2}) evaluations of (E,D).

Best possible !!

Suppose we define h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:

to build a collision (H,m) and (H',m') choose random (H,m,m') and construct H' as follows:

$$H'=D(m', E(m,H)) \iff E(m', H') = E(m,H)$$

- \bigcirc H'=E(m', D(m,H))
- H'=E(m', E(m,H))
- \bigcirc H'=D(m', D(m,H))

Other block cipher constructions

Let $E: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$ for simplicity

Miyaguchi-Preneel:

h(H, m) = E(m, H)⊕H⊕m (Whirlpool) h(H, m) = E(H⊕m, m)⊕m total of 12 variants like this

Other natural variants are insecure:

 $h(H, m) = E(m, H) \oplus m$ (HW)

Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2

Provable compression functions

Choose a random 2000-bit prime p and random $1 \le u, v \le p$.

For $m,h \in \{0,...,p-1\}$ define $h(H,m) = u^{H} \cdot v^{m} \pmod{p}$

<u>Fact:</u> finding collision for h(.,.) is as hard as solving "discrete-log" modulo p.

Problem: slow.

Collision resistance

HMAC: a MAC from SHA-256

The Merkle-Damgard iterated construction

Thm: h collision resistant \Rightarrow H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: $X \leq L \rightarrow T$ a C.R. Merkle-Damgard Hash Function

<u>Attempt #1</u>: S(k, m) = H(k ∥ m)

This MAC is insecure because:

 \bigcirc Given H(k II m) can compute H(w II k II m II PB) for any w.

 \bigcirc Given H(k II m) can compute H(k II m II w) for any w.

 $\longrightarrow_{\bigcirc}$ Given H(k || m) can compute H(k || m || PB || w) for any w.

 \bigcirc Anyone can compute H(k II m) for any m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

Building a MAC out of a hash function *H*:

HMAC: $MAC(k, m) = H(k \oplus \text{opad } || H(k \oplus \text{ipad } || m))$

HMAC in pictures

Similar to the NMAC PRF.

main difference: the two keys k_1 , k_2 are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Security bounds similar to NMAC

- Need $q^2/|T|$ to be negligible ($q \ll |T|^{\frac{1}{2}}$)

In TLS: must support HMAC-SHA1-96

Timing attacks on MAC verification

Warning: verification timing attacks [L'09]

Example: Keyczar crypto library (Python) [simplified]

def Verify(key, msg, sig_bytes):
 return HMAC(key, msg) == sig_bytes

The problem: '==' implemented as a byte-by-byte comparison

• Comparator returns false when first inequality found

Warning: verification timing attacks [L'09]

Timing attack: to compute tag for target message m do:

- Step 1: Query server with random tag
- Step 2: Loop over all possible first bytes and query server. stop when verification takes a little longer than in step 1
- Step 3: repeat for all tag bytes until valid tag found

Defense #1

Make string comparator always take same time (Python) :

return false if sig_bytes has wrong length
result = 0
for x, y in zip(HMAC(key,msg) , sig_bytes):
 result |= ord(x) ^ ord(y)
return result == 0

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python) :

def Verify(key, msg, sig_bytes):
 mac = HMAC(key, msg)
 return HMAC(key, mac) == HMAC(key, sig_bytes)

Attacker doesn't know values being compared

Lesson

Don't implement crypto yourself !