CIS 5560

Cryptography Lecture 8

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

Announcements

- HW 4 out after lecture
 - Due Tuesday, Feb 20 at 1PM on Gradescope
 - Covers PRFs, IND-CPA

Recap of last lecture

For every **PPT** Eve, there exists a negligible fn ε ,

$$\Pr\left[\begin{array}{c} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ \mathsf{Eve}(c_q) = b \middle| \begin{array}{c} \mathsf{For} \ i \text{ in } 1, \dots, q \\ (m_{i,0}, m_{i,1}) \leftarrow \mathsf{Eve}(c_{i-1}) \\ c_i = \mathsf{Enc}(k, m_{i,b}) \end{array}\right] < \frac{1}{2} + \varepsilon(n)$$

Alternate (Stronger?) definition

Also called "IND-CPA": Indistinguishability under Chosen-Plaintext Attacks

Equivalent to previous definition: just set $m_{i,0} = m_{i,1} = m_i$

Pseudorandom Functions

Collection of functions $\mathscr{F}_{\ell} = \{F_k : \{0,1\}^{\ell} \to \{0,1\}^m\}_{k \in \{0,1\}^n}$

- indexed by a key k
- *n*: key length, ℓ : input length, *m*: output length.
- Independent parameters, all poly(sec-param) = poly(n)
- #functions in $\mathcal{F}_{\ell} \leq 2^n$ (singly exponential in *n*)

Gen (1^n) : Generate a random *n*-bit key *k*. **Eval**(k, x) is a poly-time algorithm that outputs $F_k(x)$

Security: Cannot distinguish from random function

$\left| \Pr\left[A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^{\ell} \right] - \Pr\left[A^F(1^n) = 1 \mid F \leftarrow \mathsf{Fns} \right] \right| \le \mathsf{negl}(n) \,.$

Randomized encryption w/ PRFs

Gen(1^{*n*}): Generate a random *n*-bit key *k* that defines $F_k : \{0,1\}^{\ell} \to \{0,1\}^m$

Enc(*k*, *m*): Pick a random *x* and let the ciphertext *c* be the pair $(x, y = F_k(x) \oplus m)$

Dec(k, c = (x, y)):

Output $F_k(x) \oplus c$

Indistinguishable distributions

Definition: Two distributions X and Y are *computationally indistinguishable*

if for every efficient distinguisher $\left| \Pr[D(x) = 1 \mid x \leftarrow X] - \Pr[D(y) = 1 \mid y \leftarrow Y] \right| = \operatorname{negl}(n)$

Denoted by $X \approx Y$

Eg: PRG security says that $X := \{G(x) | x \leftarrow \{0,1\}^n\} \approx Y := \{y | y \leftarrow \{0,1\}^m\}$ Eg: Single msg security says that

 $\{c \leftarrow \mathsf{Enc}(k, m_0) \mid k \leftarrow \mathscr{K}\} \approx \{c \leftarrow \mathsf{Enc}(k, m_1) \mid k \leftarrow \mathscr{K}\}$

Proof by hybrid argument

Enc(*k*, *m*): Pick a random *x* and output $(x, y = F_k(x) \oplus m)$

Dec(k, c = (x, y)): Output $F_k(x) \oplus c$

Single msg security says that the following dists are indistinguishable.

 $\{c \leftarrow \mathsf{Enc}(k, m_0) \mid k \leftarrow \mathscr{K}\}$ and $\{c \leftarrow \mathsf{Enc}(k, m_1) \mid k \leftarrow \mathscr{K}\}$ How to do this? Let's create more (supposedly) indistinguishable distributions: $H_0 = \{ c := (r, m_0 \oplus F_k(r) \mid r \leftarrow \{0, 1\}^n; k \leftarrow \mathcal{K} \}$ \approx by PRF security $H_1 = \{c := (r, m_0 \oplus R(r) \mid r \leftarrow \{0, 1\}^n; R \leftarrow \mathsf{Fns}\}$ \approx defn of random fn $H_2 = \{c := (r, m_0 \oplus r' \mid r \leftarrow \{0, 1\}^n; r' \leftarrow \{0, 1\}^n\}$ \approx one time pad $H_3 = \{ c := (r, m_1 \oplus r' \mid r \leftarrow \{0, 1\}^n; r' \leftarrow \{0, 1\}^n \}$ \approx defn of random fn $H_4 = \{c := (r, m_1 \oplus R(r) \mid r \leftarrow \{0, 1\}^n; R \leftarrow \mathsf{Fns}\}$ \approx by PRF security $H_5 = \{ c := (r, m_1 \oplus F_k(r) \mid r \leftarrow \{0, 1\}^n; k \leftarrow \mathcal{K} \}$

Hybrid argument

The key steps in a hybrid argument are:

- 1. Construct a sequence of poly many distributions b/w the two target distributions.
- 2. Argue that each pair of neighboring distributions are indistinguishable.
- 3. Conclude that the target distributions are indistinguishable via contradiction:
 - A. Assume the target distributions are distinguishable
 - B. Must be the case that an intermediate pair of distributions is distinguishable
 - C. This contradicts 2 above.

Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let $\underline{p}_0, \underline{p}_1, \underline{p}_2, \dots, \underline{p}_m$ be advantage of distinguishing $(H_0, H_1), (H_1, H_2), \dots, (H_{n-1}, H_n)$

If $p_0 - p_m \ge \epsilon$ there is an index *i* such that $p_i - p_{i+1} \ge \epsilon/m$.

Proof:

$$p_m - p_0 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0) \ge \epsilon$$

At least one of the *m* terms has to be at least ε/m (averaging).

Construction 2: rand ctr-mode

F: PRF defined over (K, X, Y) where $X = \{0,1\}^{2n}$ and $Y = \{0,1\}^n$

(e.g., n=128)

r - chosen at random for every message

note: parallelizable

Today's Lecture

- PRPs and block cipher modes of operation
- PRGs \rightarrow PRFs
- Message Integrity

Also called a Block Cipher

A **block cipher** is a pair of efficient algs. (E, D):

Canonical examples:

- **1. AES**: n=128 bits, k = 128, 192, 256 bits
- **2. 3DES**: n = 64 bits, k = 168 bits (historical)

Running example

• Example PRPs: 3DES, AES, ...

AES128: $K \times X \rightarrow X$ where $K = X = \{0,1\}^{128}$ DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{56}$

3DES: $K \times X \rightarrow X$ where $X = \{0,1\}^{64}$, $K = \{0,1\}^{168}$

Functionally, any PRP where K and X are large is also a PRF.
 A PRP is a PRF where X=Y and is efficiently invertible

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

$$-$$
 if $m_1 = m_2$ then $c_1 = c_2$

In pictures

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain two or more blocks.

Then $Adv_{SS}[\mathcal{A}, ECB] = 1$

Secure Construction 1: CBC with random nonce

Cipher block chaining with a <u>random</u> IV (IV = nonce)

CBC: CPA Analysis

<u>CBC Theorem</u>: For any L>0, If E is a secure PRP over (K,X) then E_{CBC} is a sem. sec. under CPA over (K, X^L, X^{L+1}).

In particular, for a q-query adversary A attacking E_{CBC} there exists a PRP adversary B s.t.:

Adv_{CPA}[A, E_{CBC}] $\leq 2 \cdot Adv_{PRP}[B, E] + 2q^2 L^2 / |X|$ Note: CBC is only secure as long as $q^2 \cdot L^2 \ll |X|$ # messages enc. with key max msg length

- PRPs and block cipher modes of operation
- PRGs \rightarrow PRFs
- MACs, if we have time

Let's Look Back at Length Extension...

Theorem: Let G: $\{0,1\}^n \rightarrow \{0,1\}^{n+1}$ be a PRG. Then, for every polynomial m(n), there is a PRG G': $\{0,1\}^n \rightarrow \{0,1\}^{m(n)}$.

Let's Look Back at Length Extension...

Construction: Let G(s) = $G_0(s) || G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits .

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials $\ell = \ell(n)$, m = m(n), there exists a PRF family $\mathscr{F}_{\ell} = \{f_s : \{0,1\}^{\ell} \to \{0,1\}^m\}_{s \in \{0,1\}^n}$.

Note: We will focus on $m = \ell$. The output length could be made smaller (by truncation) or larger (by expansion with a PRG).

What is the standard way to improve

Let's Look Back at Length Extension...

Construction: Let G(s) = $G_0(s) | | G_1(s)$ where $G_0(s)$ is 1 bit and $G_1(s)$ is n bits .

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) || G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

Each path/leaf labeled by $x \in \{0,1\}^{\ell}$ corresponds to $f_s(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $G(s) = G_0(s) || G_1(s)$ where $G_0(s)$ and $G_1(s)$ are both n bits each.

The pseudorandom function family \mathcal{F}_{ℓ} is defined by a collection of functions f_s where:

$$f_{s}(x_{1}x_{2}...x_{\ell}) = G_{x_{\ell}}(G_{x_{\ell-1}}(...G_{x_{1}}(s)))$$

$$\mathscr{C}\text{-bit input}$$

- f_s defines 2^{ℓ} pseudorandom bits.
- The x^{th} bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^{\ell}$ evaluations as before.)

PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial L=L(n), the following two distributions are computationally indistinguishable:

 $(G(s_1), G(s_2), \dots, G(s_L)) \approx (u_1, u_2, \dots, u_L)$

Proof: By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with distinguishing advantage ε , then there is a ppt distinguisher for G with advantage $\geq \varepsilon/L$.

GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.

$$\Pr\left[A^{f_k}(1^n) = 1 \mid k \leftarrow \{0,1\}^{\mathscr{C}}\right] - \Pr\left[A^F(1^n) = 1 \mid F \leftarrow \mathsf{Fns}\right] \ge 1/p(n).$$

The pseudorandom world

The random world

The pseudorandom world: Hybrid 0

Problem: Hybrid argument on leaves doesn't work. Why?

$$\begin{array}{c|c} x & & \\ \hline D & \\ \hline \end{array} \quad f(x) \\ \hline \end{array}$$

The pseudorandom world: Hybrid 0

Key Idea: Hybrid argument by levels of the tree

$$\begin{array}{c|c} x & f(x) \\ \hline D \\ \end{array}$$

The random world: Hybrid ℓ

Hybrid *i*

Q: Are the hybrids efficiently computable?

A: Yes! Lazy Evaluation.

Hybrid *i*

 $S_{0^i}, \ldots S_{1^i}$ are random S_{0^i} 000000 000 $b_1 b_2 b_3 \ldots b_x \cdots b_{2^\ell}$

Let $p_i = \Pr[f \leftarrow H_i: D^f(1^n) = 1]$

We know: $p_0 - p_\ell \ge \varepsilon$

By a hybrid argument:

For some $i: p_i - p_{i+1} \ge \varepsilon/\ell$

(use the PRG repetition lemma)

A distinguisher with advantage ε/ℓ between the hybrids implies a distinguisher with advantage $\geq \varepsilon/q\ell$ for the PRG. (where q is the number of queries that D makes)

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ , *m*, there exists a PRF family $\mathscr{F}_{\ell} = \{f_s : \{0,1\}^{\ell} \to \{0,1\}^m\}_{s \in \{0,1\}^n}$.

Some nits:

- Expensive: ℓ invocations of a PRG.
- ◆ Sequential: bit-by-bit, ℓ sequential invocations of a PRG.
- Loss in security reduction: break PRF with advantage
 ε ⇒ break PRG with advantage ε/qℓ, where q is an arbitrary polynomial = #queries of the PRF distinguisher. Tighter reduction? Avoid the loss?

The authentication problem

This is known as a **man-in-the-middle attack.** How can Bob check if the **message is indeed from Alice?**

The authentication problem

We want Alice to generate a tag for the message *m* which is hard to generate without the secret key *k*.

Wait... Does encryption not solve this?

Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are *malleable*.

Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are *malleable*.

Privacy and Integrity are very different goals!

Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen (1^n) : Produces a key $k \leftarrow \mathcal{K}$.
- MAC(*k*, *m*): Outputs a tag *t* (may be deterministic).
- Ver(k, m, t): Outputs Accept or Reject.

Correctness: Pr[Ver(k, m, MAC(k, m) = 1] = 1

Security: *Hard to forge.* Intuitively, it should be hard to come up with a new pair (*m*', *t*') such that Ver accepts.

What is the power of the adversary?

- Can see many pairs (m, MAC(k, m)).
- Can access a MAC oracle $MAC(k, \bullet)$

Obtain tags for message of choice.
 This is called a *chosen message attack (CMA)*.

Defining MAC Security

- **Total break:** The adversary should not be able to recover the key *k*.
- **Universal break:** The adversary can generate a valid tag for every message.
- Existential break: The adversary can generate a new valid tag *t* for some message *m*.

We will require MACs to be secure against the existential break!!

EUF-CMA Security

Existentially Unforgeable against Chosen Message Attacks

Want: $Pr((m, t) \leftarrow A^{MAC(k, \cdot)}(1^n), Ver(k, m, t) = 1, (m, t) \notin Q)) = negl(n)$. where Q is the set of queries $\left\{ (m_i, t_i) \right\}_i$ that A makes.

Constructing a MAC

Gen(1^{*n*}): Produces a PRF key $k \leftarrow K$. MAC(k, m): Output $f_k(m)$. Ver(k, m, t): Accept if $f_k(m) = t$, reject otherwise.

Security: Our earlier unpredictability lemma about PRFs essentially proves that this is secure!

Dealing with Replay Attacks

- The adversary could send an old valid (*m*, *tag*) at a later time.
 - In fact, our definition of security does not rule this out.
- In practice:
 - Append a time-stamp to the message. Eg. (m, T, MAC(m, T)) where T = 21 Sep 2022, 1:47pm.
 - Sequence numbers appended to the message (this requires the MAC algorithm to be *stateful*).