CIS 5560

Cryptography
 Lecture 8

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 4 out after lecture
- Due Tuesday, Feb 20 at 1PM on Gradescope
- Covers PRFs, IND-CPA

Recap of last lecture

Semantic Security for Many Msgs

Challenger

1. $k \leftarrow \mathscr{K}$
2. $b \leftarrow\{0,1\}$
3. $c:=\operatorname{Enc}\left(k, m_{b}\right)$
4. $b \stackrel{?}{=} b^{\prime}$

For every PPT Eve, there exists a negligible fn ε,

$$
\operatorname{Pr}\left[\operatorname{Eve}\left(c_{q}\right)=b \left\lvert\, \begin{array}{c}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
\operatorname{For} i \text { in } 1, \ldots, q: \\
\left(m_{i, 0}, m_{i, 1}\right) \leftarrow \operatorname{Eve}\left(c_{i-1}\right) \\
c_{i}=\operatorname{Enc}\left(k, m_{i, b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

Alternate (Stronger?) definition

Also called "IND-CPA": Indistinguishability under Chosen-Plaintext Attacks Equivalent to previous definition: just set $m_{i, 0}=m_{i, 1}=m_{i}$

Pseudorandom Functions

Collection of functions $\mathscr{F}_{\ell}=\left\{F_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) $=\operatorname{poly}(n)$
- \#functions in $\mathscr{F}_{\ell} \leq 2^{n}$ (singly exponential in n)
$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k.
$\operatorname{Eval}(k, x)$ is a poly-time algorithm that outputs $F_{k}(x)$

Security: Cannot distinguish from random function

$$
\left|\operatorname{Pr}\left[A^{f_{k}\left(1^{n}\right)}=1 \mid k \leftarrow\{0,1\}^{\ell}\right]-\operatorname{Pr}\left[A^{F}\left(1^{n}\right)=1 \mid F \leftarrow \mathrm{Fns}\right]\right| \leq \operatorname{negl}(n) .
$$

Randomized encryption w/ PRFs

Gen $\left(1^{n}\right)$: Generate a random n-bit key k that defines

$$
F_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}
$$

$\operatorname{Enc}(k, m)$: Pick a random x and let the ciphertext c be the pair $\left(x, y=F_{k}(x) \oplus m\right)$

$$
\operatorname{Dec}(k, c=(x, y)):
$$

Output $F_{k}(x) \oplus c$

Indistinguishable distributions

Definition: Two distributions X and Y are computationally indistinguishable if for every efficient distinguisher

$$
|\operatorname{Pr}[D(x)=1 \mid x \leftarrow X]-\operatorname{Pr}[D(y)=1 \mid y \leftarrow Y]|=\operatorname{neg}(n)
$$

Denoted by $X \approx Y$

Eg: PRG security says that $X:=\left\{G(x) \mid x \leftarrow\{0,1\}^{n}\right\} \approx Y:=\left\{y \mid y \leftarrow\{0,1\}^{m}\right\}$
Eg: Single msg security says that

$$
\left\{c \leftarrow \operatorname{Enc}\left(k, m_{0}\right) \mid k \leftarrow \mathscr{K}\right\} \approx\left\{c \leftarrow \operatorname{Enc}\left(k, m_{1}\right) \mid k \leftarrow \mathscr{K}\right\}
$$

Proof by hybrid argument

$\operatorname{Enc}(k, m)$: Pick a random x and output $\left(x, y=F_{k}(x) \oplus m\right)$
$\operatorname{Dec}(k, c=(x, y)):$ Output $F_{k}(x) \oplus c$
Single msg security says that the following dists are indistinguishable.

$$
\left\{c \leftarrow \operatorname{Enc}\left(k, m_{0}\right) \mid k \leftarrow \mathscr{K}\right\} \text { and }\left\{c \leftarrow \operatorname{Enc}\left(k, m_{1}\right) \mid k \leftarrow \mathscr{K}\right\}
$$

How to do this? Let's create more (supposedly) indistinguishable distributions:

$$
\begin{aligned}
& H_{0}=\left\{c:=\left(r, m_{0} \oplus F_{k}(r) \mid r \leftarrow\{0,1\}^{n} ; k \leftarrow \mathscr{K}\right\}\right. \\
& H_{1}=\left\{c:=\left(r, m_{0} \oplus R(r) \mid r \leftarrow\{0,1\}^{n} ; R \leftarrow \text { Fns }\right\}\right. \\
& H_{2}=\left\{c:=\left(r, m_{0} \oplus r^{\prime} \mid r \leftarrow\{0,1\}^{n} ; r^{\prime} \leftarrow\{0,1\}^{n}\right\}\right. \\
& H_{3}=\left\{c:=\left(r, m_{1} \oplus r^{\prime} \mid r \leftarrow\{0,1\}^{n} ; r^{\prime} \leftarrow\{0,1\}^{n}\right\}\right. \\
& H_{4}=\left\{c:=\left(r, m_{1} \oplus R(r) \mid r \leftarrow\{0,1\}^{n} ; R \leftarrow\right. \text { defn of rand security }\right. \\
& H_{5}=\left\{c:=\left(r, m_{1} \oplus F_{k}(r) \mid r \leftarrow\{0,1\}^{n} ; k \leftarrow \mathscr{K}\right\} \quad \approx \text { defn of random } f\right. \text { fn } \\
& \approx \text { by PRF security }
\end{aligned}
$$

Hybrid argument

The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b / w the two target distributions.
2. Argue that each pair of neighboring distributions are indistinguishable.
3. Conclude that the target distributions are indistinguishable via contradiction:
A. Assume the target distributions are distinguishable
B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let $p_{0}, p_{1}, p_{2}, \ldots, p_{m}$ be advantage of distinguishing $\left(H_{0}, H_{1}\right),\left(H_{1}, H_{2}\right), \ldots,\left(H_{n-1}, H_{n}\right)$

If $p_{0}-p_{m} \geq \epsilon$ there is an index i such that $p_{i}-p_{i+1} \geq \epsilon / m$.

Proof:

$$
p_{m}-p_{0}=\left(p_{m}-p_{m-1}\right)+\left(p_{m-1}-p_{m-2}\right)+\cdots+\left(p_{1}-p_{0}\right) \geq \epsilon
$$

At least one of the m terms has to be at least ε / m (averaging).

Construction 2: rand ctr-mode

F: PRF defined over (K, X, Y) where $X=\{0,1\}^{2 n}$ and $Y=\{0,1\}^{n}$ (e.g., $n=128$)

$F_{k}(r \\| 0)$	$F_{k}(r \\| 1)$	\ldots	$F_{k}(r \\| L) \quad$ (counter counts mod 2^{n})

ciphertext
r - chosen at random for every message
note: parallelizable

Today's Lecture

- PRPs and block cipher modes of operation
- PRGs \rightarrow PRFs
- Message Integrity

Also called a Block Cipher

A block cipher is a pair of efficient algs. (E, D):

Canonical examples:

1. AES: $\mathrm{n}=128$ bits, $\mathrm{k}=128,192,256$ bits
2. 3DES: $n=64$ bits, $k=168$ bits (historical)

Running example

- Example PRPs: 3DES, AES, ...

AES128: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{K}=\mathrm{X}=\{0,1\}^{128}$
DES: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{X}=\{0,1\}^{64}, \mathrm{~K}=\{0,1\}^{56}$
3DES: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{X}=\{0,1\}^{64}, \mathrm{~K}=\{0,1\} 168$

- Functionally, any PRP where K and X are large is also a PRF.
- A PRP is a PRF where $X=Y$ and is efficiently invertible

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

- if $m_{1}=m_{2}$ then $c_{1}=c_{2}$

In pictures

Original penguin

ECB encrypted penguin

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain two or more blocks.

Then $\operatorname{Adv}_{S S}[\mathscr{A}, E C B]=1$

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

CBC: CPA Analysis

CBC Theorem: For any $L>0$,

If E is a secure PRP over (K, X) then
$E_{C B C}$ is a sem. sec. under CPA over (K, X^{L}, X^{L+1}).

In particular, for a q-query adversary A attacking $E_{C B C}$ there exists a PRP adversary B s.t.:

$$
\operatorname{Adv}_{\mathrm{CPA}}\left[\mathrm{~A}, \mathrm{E}_{\mathrm{CBC}}\right] \leq 2 \cdot \operatorname{Adv}_{\text {PRP }}[\mathrm{B}, \mathrm{E}]+2 \cdot \mathrm{a}^{2} \mathrm{~L}^{2} /|\mathrm{X}|
$$

Note: CBC is only secure as long as $\mathrm{q}^{2} \cdot \mathrm{~L}^{2} \ll|X|$

- PRPs and block cipher modes of operation
- PRGs \rightarrow PRFs
- MACs, if we have time

Let's Look Back at Length Extension...

> Theorem: Let G: $\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG. Then, for every polynomial $m(n)$, there is a PRG G': $\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$.

Let's Look Back at Length Extension...

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ is 1 bit and $G_{1}(s)$ is n bits.

Goldreich-Goldwasser-Micali PRF

Theorem: Let G be a PRG. Then, for every polynomials $\ell=\ell(\mathrm{n}), m$ $=m(\mathrm{n})$, there exists a PRF family $\mathscr{F}_{\ell}=\left\{f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{s \in\{0,1\}^{n}}$

Note: We will focus on $m=\ell$.
The output length could be made smaller (by truncation) or larger (by expansion with a PRG).

What is the standard way to improve

Let’s Look Back at Length Extension...

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s)| | G_{1}(s)$ where $G_{0}(s)$ is 1 bit and $G_{1}(s)$ is n bits .

Goldreich-Goldwasser-Micali PRF

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ and $G_{1}(s)$ are both n bits each.

Each path/leaf labeled by $x \in\{0,1\}^{\ell}$ corresponds to $f_{s}(x)$.

Goldreich-Goldwasser-Micali PRF

Construction: Let $\mathrm{G}(\mathrm{s})=G_{0}(s) \| G_{1}(s)$ where $G_{0}(s)$ and $G_{1}(s)$ are both n bits each.

The pseudorandom function family \mathscr{F}_{ℓ} is defined by a collection of functions f_{s} where:

$$
f_{s}\left(x_{1} x_{2} \ldots x_{\ell}\right)=\underbrace{\boldsymbol{G}_{x_{t}}\left(\boldsymbol{G}_{x_{\ell-1}}\left(\ldots \boldsymbol{G}_{x_{1}}(s)\right)\right.}_{\ell \text {-bit input }}
$$

- f_{s} defines 2^{ℓ} pseudorandom bits.
- The $x^{\text {th }}$ bit can be computed using ℓ evaluations of the PRG G (as opposed to $x \approx 2^{\ell}$ evaluations as before.)

PRG Repetition Lemma

Lemma: Let G be a PRG. Then, for every polynomial $\mathrm{L}=\mathrm{L}(\mathrm{n})$, the following two distributions are computationally indistinguishable:

$$
\left(\boldsymbol{G}\left(s_{1}\right), \boldsymbol{G}\left(s_{2}\right), \ldots, \boldsymbol{G}\left(s_{L}\right)\right) \approx\left(u_{1}, u_{2}, \ldots, u_{L}\right)
$$

Proof: By Hybrid Argument.

If there is a ppt distinguisher between the two distributions with distinguishing advantage ε, then there is a ppt distinguisher for G with advantage $\geq \varepsilon / L$.

GGM PRF: Proof of Security

By contradiction. Assume there is a ppt D and a poly function p s.t.

$$
\left|\operatorname{Pr}\left[A^{f_{k}\left(1^{n}\right)}=1 \mid k \leftarrow\{0,1\}^{t}\right]-\operatorname{Pr}\left[A^{F}\left(1^{n}\right)=1 \mid F \leftarrow \mathrm{Fns}\right]\right| \geq 1 / p(n) .
$$

The pseudorandom world

Distinguisher D

The random world

Distinguisher D

The pseudorandom world: Hybrid 0

D
Hybrid argument on leaves doesn't work. Why?

The pseudorandom world: Hybrid 0

Key Idea:

Hybrid argument by levels of the tree

The pseudorandom world:

Hybrid 0

D

Hybrid 1

The random world:
Hybrid ℓ

Hybrid i

Q: Are the hybrids efficiently computable?

A: Yes! Lazy Evaluation.

Hybrid i

Let $p_{i}=\operatorname{Pr}\left[f \leftarrow H_{i}: D^{f}\left(1^{n}\right)=1\right]$
We know: $p_{0}-p_{\ell} \geq \varepsilon$
By a hybrid argument:
For some $i: p_{i}-p_{i+1} \geq \varepsilon / \ell$
(use the PRG repetition lemma)
A distinguisher with advantage ε / ℓ between the hybrids implies a distinguisher with advantage $\geq \varepsilon / q \ell$ for the PRG.
(where q is the number of queries that D makes)

Hybrid i

Hybrid $i+\mathbb{1}$

GGM PRF

Theorem: Let G be a PRG. Then, for every polynomials ℓ, m, there exists a PRF family $\mathscr{F}_{e}=\left\{f_{s}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{s \in\{0,1\}^{n}}$.

Some nits:

- Expensive: ℓ invocations of a PRG.
- Sequential: bit-by-bit, ℓ sequential invocations of a PRG.
- Loss in security reduction: break PRF with advantage $\varepsilon \Longrightarrow$ break PRG with advantage $\varepsilon / q \ell$, where q is an arbitrary polynomial = \#queries of the PRF distinguisher.
Tighter reduction? Avoid the loss?

The authentication problem

This is known as a man-in-the-middle attack.
How can Bob check if the message is indeed from Alice?

The authentication problem

We want Alice to generate a tag for the message m which is hard to generate without the secret key k.

Wait... Does encryption not solve this?

Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are malleable.

Wait... Does encryption not solve this?

One-time pad (and encryption schemes in general) are malleable.

Privacy and Integrity are very different goals!

Message Authentication Codes (MACs)

A triple of algorithms (Gen, MAC, Ver):

- Gen $\left(1^{n}\right)$: Produces a key $k \leftarrow \mathscr{K}$.
- $\operatorname{MAC}(k, m)$: Outputs a tag t (may be deterministic).
- $\operatorname{Ver}(k, m, t)$: Outputs Accept or Reject.

Correctness: $\operatorname{Pr}[\operatorname{Ver}(k, m, \operatorname{MAC}(k, m)=1]=1$
Security: Hard to forge. Intuitively, it should be hard to come up with a new pair (m ', t^{\prime}) such that Ver accepts.

What is the power of the adversary?

- Can see many pairs $(m, M A C(k, m))$.
- Can access a MAC oracle $M A C(k, ~-~)$
- Obtain tags for message of choice.

This is called a chosen message attack (CMA).

Defining MAC Security

- Total break: The adversary should not be able to recover the key k.
- Universal break: The adversary can generate a valid tag for every message.
- Existential break: The adversary can generate a new valid tag t for some message m.

We will require MACs to be secure against the existential break!!

EUF-CMA Security

Existentially Unforgeable against $\underline{\text { Chosen }}$ Message Attacks

$$
k \leftarrow K
$$

$$
t_{2}=\operatorname{MAC}\left(k, m_{2}\right)
$$

\longrightarrow| (m, t) |
| :--- | | Accept if $(m, t) \neq\left(m_{i}, t_{i}\right)$ |
| :--- |
| for all i, and |
| $\operatorname{Ver}(k, m, t)=1$ |

Want: $\left.\operatorname{Pr}\left((m, t) \leftarrow A^{\operatorname{MAC}(k, \cdot)}\left(1^{n}\right), \operatorname{Ver}(k, m, t)=1,(m, t) \notin Q\right)\right)=\operatorname{negl}(n)$. where Q is the set of queries $\left\{\left(m_{i}, t_{i}\right)\right\}_{i}$ that A makes.

Constructing a MAC

Gen $\left(1^{n}\right)$: Produces a PRF key $k \leftarrow K$.
$\operatorname{MAC}(k, m)$: Output $f_{k}(m)$.
$\operatorname{Ver}(k, m, t)$: Accept if $f_{k}(m)=t$, reject otherwise.
Security: Our earlier unpredictability lemma about PRFs essentially proves that this is secure!

Dealing with Replay Attacks

- The adversary could send an old valid ($m, t a g$) at a later time.
- In fact, our definition of security does not rule this out.
- In practice:
- Append a time-stamp to the message. Eg. (m, T, MAC(m, T)) where T = 21 Sep 2022, 1:47pm.
- Sequence numbers appended to the message (this requires the MAC algorithm to be stateful).

