CIS 5560

Cryptography Lecture 7

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 3 out after lecture
- Due Tuesday, Feb 13 at 1PM on Gradescope
- Covers PRGs, OWFs
- Converting Matan's OH to a Homework Party
- Work on homework problems with other students
- (Still have to write up your own answers!)
- TA(s) and I and will be around for answering questions
- Good way to meet other students in class and make friends =)

Recap of last lecture

Semantic Security for Many Msgs

Challenger

1. $k \leftarrow \mathscr{K}$
2. $b \leftarrow\{0,1\}$
3. $c:=\operatorname{Enc}\left(k, m_{b}\right)$
4. $b \stackrel{?}{=} b^{\prime}$

For every PPT Eve, there exists a negligible fn ε,

$$
\operatorname{Pr}\left[\operatorname{Eve}\left(c_{q}\right)=b \left\lvert\, \begin{array}{c}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
\operatorname{For} i \text { in } 1, \ldots, q: \\
\left(m_{i, 0}, m_{i, 1}\right) \leftarrow \operatorname{Eve}\left(c_{i-1}\right) \\
c_{i}=\operatorname{Enc}\left(k, m_{i, b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

Alternate (Stronger?) definition

Also called "IND-CPA": Indistinguishability under Chosen-Plaintext Attacks Equivalent to previous definition: just set $m_{i, 0}=m_{i, 1}=m_{i}$

Stream Ciphers insecure under CPA

Problem: $\mathrm{E}(\mathrm{k}, \mathrm{m})$ outputs same ciphertext for msg m .
Then:

Chal. $\mathrm{K} \leftarrow \mathrm{K}$	$\mathrm{m}_{0}, \mathrm{~m}_{0} \in \mathrm{M}$	Adv.
	$\mathrm{c}_{0} \leftarrow \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{0}\right)$	
	$\mathrm{m}_{0}, \mathrm{~m}_{1} \in \mathrm{M}$	output 0$\text { if } \mathrm{c}=\mathrm{c}_{0}$
	$\mathrm{c} \leftarrow \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{\mathrm{b}}\right)$	

So what? an attacker can learn that two encrypted files are the same, two encrypted packets are the same, etc.

- Leads to significant attacks when message space M is small

Stream Ciphers insecure under CPA

Problem: $\mathrm{E}(\mathrm{k}, \mathrm{m})$ always outputs same ciphertext for msg m .
Then:

Chal.$\mathrm{k} \leftarrow \mathrm{~K}$	$\mathrm{m}_{0}, \mathrm{~m}_{0} \in \mathrm{M}$	Adv.
	$\mathrm{c}_{0} \leftarrow \mathrm{E}\left(\mathrm{k}, \mathrm{m}_{0}\right)$	
	$\mathbf{m}_{0}, \mathbf{m}_{1} \in \mathrm{M}$	output 0 if $\mathrm{C}=\mathrm{C}_{0}$
	$c \leftarrow E\left(k, \mathbf{m}_{b}\right)$	

If secret key is to be used multiple times \Rightarrow given the same plaintext message twice, encryption must produce different outputs.

Today's Lecture

- Deeper look at PRFs
- PRFs \rightarrow multi-message encryption
- Hybrid argument
- PRGs \rightarrow PRFs

Pseudorandom Functions

Collection of functions $\mathscr{F}_{\ell}=\left\{F_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}\right\}_{k \in\{0,1\}^{n}}$

- indexed by a key k
- n : key length, ℓ : input length, m : output length.
- Independent parameters, all poly(sec-param) $=\operatorname{poly}(n)$
- \#functions in $\mathscr{F}_{\ell} \leq 2^{n}$ (singly exponential in n)
$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k.
$\operatorname{Eval}(k, x)$ is a poly-time algorithm that outputs $F_{k}(x)$

How to define security?

Let's try to build it up like the PRG security definition

PRG Security

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\operatorname{neg}(n)
$$

PRG vs PRF

- So, for PRG security, we give the adversary either a random string or a pseudorandom string, and ask it to figure out which one it is
- Can the same strategy work for PRFs?

PRF Security - Attempt 1

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\operatorname{neg} \mid(n)
$$

PRF Security - Attempt 1

-What's the problem with this?

- Hint: What does a random function look like?
- Is it efficiently evaluatable?
- Does it have a short description?
- It maps inputs to random values (example on board)
- Ans: we can't easily send a random function!
- So: how about we give the challenger "oracle" access

PRF Security - Attempt 2

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\operatorname{neg} \mid(n)
$$

PRF Security - Attempt 1

- Q: How many questions should the adversary be allowed to ask?
- 1
- 2
- poly(n)
- $\exp (\mathrm{n})$
- Why is 1 insufficient? Can't tell any information from 1 query
-Why is $\exp (\mathrm{n})$ too many? Adv will run in exponential time!

PRF Security - Attempt 2

$$
\operatorname{Pr}\left[b=b^{\prime}\right]=1 / 2+\operatorname{neg} \mid(n)
$$

PRFs \rightarrow multi-message encryption

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?

Stateful encryption w/ PRFs

- $\operatorname{Gen}\left(1^{n}\right) \rightarrow k$:
- Sample an n-bit string at random.
$-\operatorname{Enc}(k, m, s t) \rightarrow c:$

1. Interpret $\mathbf{s t}$ as number ℓ of messages encrypted so far.
2. Output $c=F_{k}(\ell) \oplus m$
$-\operatorname{Dec}(k, c, \mathbf{s t}) \rightarrow m:$
3. Interpret $\mathbf{s t}$ as number ℓ of messages encrypted so far.

- Output $m=F_{k}(\ell) \oplus c$

Does this work?

Ans: Yes!

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Must maintain counter of encrypted messages
- (Just like PRG solution)

Ideas for multi-message encryption

- State? (e.g. counter of num msgs)
- Randomness?

Randomized encryption w/ PRFs

$\operatorname{Gen}\left(1^{n}\right)$: Generate a random n-bit key k that defines

$$
F_{k}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{m}
$$

$\operatorname{Enc}(k, m)$: Pick a random x and let the ciphertext c be the pair $\left(x, y=F_{k}(x) \oplus m\right)$

$$
\operatorname{Dec}(k, c=(x, y)):
$$

Output $F_{k}(x) \oplus c$

Does this work?

Ans: Yes!

Proof: next

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Need good randomness during encryption

Security of Randomized Encryption

$\operatorname{Enc}(k, m)$: Pick a random x and output $\left(x, y=F_{k}(x) \oplus m\right)$
$\operatorname{Dec}(k, c=(x, y)):$ Output $F_{k}(x) \oplus c$

- Proof strategy: Focusing on 1 msg security first
- We will introduce two new tools:
- Indistinguishability of distributions
- The hybrid lemma/argument

Indistinguishable distributions

Definition: Two distributions X and Y are computationally indistinguishable if for every efficient distinguisher

$$
|\operatorname{Pr}[D(x)=1 \mid x \leftarrow X]-\operatorname{Pr}[D(y)=1 \mid y \leftarrow Y]|=\operatorname{neg}(n)
$$

Denoted by $X \approx Y$

Eg: PRG security says that $X:=\left\{G(x) \mid x \leftarrow\{0,1\}^{n}\right\} \approx Y:=\left\{y \mid y \leftarrow\{0,1\}^{m}\right\}$
Eg: Single msg security says that

$$
\left\{c \leftarrow \operatorname{Enc}\left(k, m_{0}\right) \mid k \leftarrow \mathscr{K}\right\} \approx\left\{c \leftarrow \operatorname{Enc}\left(k, m_{1}\right) \mid k \leftarrow \mathscr{K}\right\}
$$

Proof by hybrid argument

$\operatorname{Enc}(k, m)$: Pick a random x and output $\left(x, y=F_{k}(x) \oplus m\right)$
$\operatorname{Dec}(k, c=(x, y)):$ Output $F_{k}(x) \oplus c$
Single msg security says that the following dists are indistinguishable.

$$
\left\{c \leftarrow \operatorname{Enc}\left(k, m_{0}\right) \mid k \leftarrow \mathscr{K}\right\} \text { and }\left\{c \leftarrow \operatorname{Enc}\left(k, m_{1}\right) \mid k \leftarrow \mathscr{K}\right\}
$$

How to do this? Let's create more (supposedly) indistinguishable distributions:

$$
\begin{aligned}
& H_{0}=\left\{c:=\left(r, m_{0} \oplus F_{k}(r) \mid r \leftarrow\{0,1\}^{n} ; k \leftarrow \mathscr{K}\right\}\right. \\
& H_{1}=\left\{c:=\left(r, m_{0} \oplus R(r) \mid r \leftarrow\{0,1\}^{n} ; R \leftarrow \text { Fns }\right\}\right. \\
& H_{2}=\left\{c:=\left(r, m_{0} \oplus r^{\prime} \mid r \leftarrow\{0,1\}^{n} ; r^{\prime} \leftarrow\{0,1\}^{n}\right\}\right. \\
& H_{3}=\left\{c:=\left(r, m_{1} \oplus r^{\prime} \mid r \leftarrow\{0,1\}^{n} ; r^{\prime} \leftarrow\{0,1\}^{n}\right\}\right. \\
& H_{4}=\left\{c:=\left(r, m_{1} \oplus R(r) \mid r \leftarrow\{0,1\}^{n} ; R \leftarrow\right. \text { defn of rand security }\right. \\
& H_{5}=\left\{c:=\left(r, m_{1} \oplus F_{k}(r) \mid r \leftarrow\{0,1\}^{n} ; k \leftarrow \mathscr{K}\right\} \quad \approx \text { defn of random } f\right. \text { fn } \\
& \approx \text { by PRF security }
\end{aligned}
$$

Hybrid argument

The key steps in a hybrid argument are:

1. Construct a sequence of poly many distributions b / w the two target distributions.
2. Argue that each pair of neighboring distributions are indistinguishable.
3. Conclude that the target distributions are indistinguishable via contradiction:
A. Assume the target distributions are distinguishable
B. Must be the case that an intermediate pair of distributions is distinguishable
C. This contradicts 2 above.

Hybrid argument

B. Must be the case that an intermediate pair of distributions is distinguishable

Lemma: Let $p_{0}, p_{1}, p_{2}, \ldots, p_{m}$ be advantage of distinguishing $\left(H_{0}, H_{1}\right),\left(H_{1}, H_{2}\right), \ldots,\left(H_{n-1}, H_{n}\right)$

If $p_{0}-p_{m} \geq \epsilon$ there is an index i such that $p_{i}-p_{i+1} \geq \epsilon / m$.

Proof:

$$
p_{m}-p_{0}=\left(p_{m}-p_{m-1}\right)+\left(p_{m-1}-p_{m-2}\right)+\cdots+\left(p_{1}-p_{0}\right) \geq \epsilon
$$

At least one of the m terms has to be at least ε / m (averaging).

Security of Randomized Encryption

$\operatorname{Enc}(k, m)$: Pick a random x and output $\left(x, y=F_{k}(x) \oplus m\right)$
$\operatorname{Dec}(k, c=(x, y)):$ Output $F_{k}(x) \oplus c$

- Proof strategy:
- 1 msg security done.
- What about multi-msg security?

Multi-msg security proof

Can be written as

$$
\begin{aligned}
& \left\{\left(\operatorname{Enc}\left(k, m_{0}\right), \operatorname{Enc}\left(k, m_{1}\right), \ldots, \operatorname{Enc}\left(k, m_{n}\right)\right) \mid k \leftarrow \mathscr{K}\right\} \\
\approx & \left\{\left(\operatorname{Enc}\left(k, m_{0}^{\prime}\right), \operatorname{Enc}\left(k, m_{1}^{\prime}\right), \ldots, \operatorname{Enc}\left(k, m_{n}^{\prime}\right)\right) \mid k \leftarrow \mathscr{K}\right\}
\end{aligned}
$$

How to prove?
Hybrid argument!

$$
\begin{aligned}
H_{0}=\left\{\left(\operatorname{Enc}\left(k, m_{0}\right), \operatorname{Enc}\left(k, m_{1}\right), \ldots, \operatorname{Enc}\left(k, m_{n}\right)\right) \mid k \leftarrow \mathscr{K}\right\} & \\
H_{1}=\left\{\left(\operatorname{Enc}\left(k, m_{0}^{\prime}\right), \operatorname{Enc}\left(k, m_{1}\right), \ldots, \operatorname{Enc}\left(k, m_{n}\right)\right) \mid k \leftarrow \mathscr{K}\right\} & \approx \text { single msg security } \\
H_{2}=\left\{\left(\operatorname{Enc}\left(k, m_{0}^{\prime}\right), \operatorname{Enc}\left(k, m_{1}^{\prime}\right), \ldots, \operatorname{Enc}\left(k, m_{n}\right)\right) \mid k \leftarrow \mathscr{K}\right\} & \approx \text { single msg security } \\
& \approx \text { single msg security } \\
H_{n-1}=\left\{\left(\operatorname{Enc}\left(k, m_{0}^{\prime}\right), \operatorname{Enc}\left(k, m_{1}\right), \ldots, \operatorname{Enc}\left(k, m_{n}\right)\right) \mid k \leftarrow \mathscr{K}\right\} & \approx \text { single msg security } \\
H_{n}=\left\{\left(\operatorname{Enc}\left(k, m_{0}^{\prime}\right), \operatorname{Enc}\left(k, m_{1}^{\prime}\right), \ldots, \operatorname{Enc}\left(k, m_{n}^{\prime}\right)\right) \mid k \leftarrow \mathscr{K}\right\} & \approx \text { single msg security }
\end{aligned}
$$

So far

Multi-msg security via randomized encryption

Pros:

- Relies on existing tools
- Generally fast
- No need to run PRF from start!

Cons:

- Ciphertext is $\sim 2 x$ larger: $\left(r, m \oplus F_{k}(r)\right)$
- Can only encrypt fixed-size n bit msg at a time
- Thus, sending a message of, say, 10n bits, requires 20n-sized ciphertext

Multi-msg security for long msgs

New concept: modes of operation
Ideas?
Recall:

- Counter-based encryption
- Randomized encryption

Can we combine them?

Construction 2: rand ctr-mode

F: PRF defined over (K, X, Y) where $X=\{0,1\}^{2 n}$ and $Y=\{0,1\}^{n}$ (e.g., $n=128$)

$F_{k}(r \\| 0)$	$F_{k}(r \\| 1)$	\ldots	$F_{k}(r \\| L) \quad$ (counter counts mod 2^{n})

ciphertext
r - chosen at random for every message
note: parallelizable

rand ctr-mode: CPA analysis

Randomized counter mode: random IV.
Counter-mode Theorem: For any $\mathrm{L}>0$,
If F is a secure PRF over (K, X, Y) then
$\mathrm{E}_{\mathrm{CTR}}$ is IND-CPA-secure.

In particular, for a q-query adversary A attacking $\mathrm{E}_{\mathrm{CTR}}$
there exists a PRF adversary B s.t.:

$$
\operatorname{Adv}_{\mathrm{CPA}}\left[A, \mathrm{E}_{\mathrm{CTR}}\right] \leq 2 \cdot \operatorname{Adv}_{\mathrm{PRF}}[B, \mathrm{~F}]+2 \mathrm{q}^{2} \mathrm{~L} /|\mathrm{X}|
$$

Note: ctr-mode only secure as long as $q^{2} \cdot L \ll|X|$

Multi-msg security via randomized encryption

Pros:

- Pretty fast
- Ciphertext is $\sim(1+1 / L)$ larger \rightarrow small for large L
- Parallelizable!

Cons:

- PRFs somewhat difficult to find, kind of slow

Good for us: Pseudorandom Permutations are easier to find!

PRPs and PRFs

- Pseudo Random Function (PRF) defined over ($\mathrm{K}, \mathrm{X}, \mathrm{Y}$):

$$
\mathrm{F}: \mathrm{K} \times \mathrm{X} \rightarrow \mathrm{Y}
$$

such that exists "efficient" algorithm to evaluate $F(k, x)$

- Pseudo Random Permutation (PRP) defined over (K,X):
$E: K \times X \rightarrow X$
such that:

1. Exists "efficient" algorithm to evaluate $E(k, x)$
2. The function $E(k, \cdot)$ is one-to-one
3. Exists "efficient" inversion algorithm $D(k, x)$

Also called a Block Cipher

A block cipher is a pair of efficient algs. (E, D):

Canonical examples:

1. AES: $\mathrm{n}=128$ bits, $\mathrm{k}=128,192,256$ bits
2. 3DES: $n=64$ bits, $k=168$ bits (historical)

Running example

- Example PRPs: 3DES, AES, ...

AES128: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{K}=\mathrm{X}=\{0,1\}^{128}$
DES: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{X}=\{0,1\}^{64}, \mathrm{~K}=\{0,1\}^{56}$
3DES: $\mathrm{K} \times \mathrm{X} \rightarrow \mathrm{X}$ where $\mathrm{X}=\{0,1\}^{64}, \mathrm{~K}=\{0,1\}^{168}$

- Functionally, any PRP where K and X are large is also a PRF.
- A PRP is a PRF where $X=Y$ and is efficiently invertible

Incorrect use of a PRP

Electronic Code Book (ECB):

Problem:

- if $m_{1}=m_{2}$ then $c_{1}=c_{2}$

In pictures

Original penguin

ECB encrypted penguin

ECB is not Semantically Secure even for 1 msg

ECB is not semantically secure for messages that contain two or more blocks.

Then $\operatorname{Adv}_{S S}[\mathscr{A}, E C B]=1$

Secure Construction 1: CBC with random nonce

Cipher block chaining with a random IV (IV = nonce)

CBC: CPA Analysis

CBC Theorem: For any $L>0$,

If E is a secure PRP over (K, X) then
$E_{C B C}$ is a sem. sec. under CPA over (K, X^{L}, X^{L+1}).

In particular, for a q-query adversary A attacking $E_{C B C}$ there exists a PRP adversary B s.t.:

$$
\operatorname{Adv}_{\mathrm{CPA}}\left[\mathrm{~A}, \mathrm{E}_{\mathrm{CBC}}\right] \leq 2 \cdot \operatorname{Adv}_{\text {PRP }}[\mathrm{B}, \mathrm{E}]+2 \cdot \mathrm{a}^{2} \mathrm{~L}^{2} /|\mathrm{X}|
$$

Note: CBC is only secure as long as $\mathrm{q}^{2} \cdot \mathrm{~L}^{2} \ll|X|$

HW

- Construct PRF from PRG!

Next Class:

- What happens if adversary can tamper with messages?

