CIS 5560

Cryptography
 Lecture 5

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope
- Covers PRGs, OWFs, and semantic security
- Get started today and make use of office hours!
- New Office Hours:
- Alireza: Tuesday 5-6PM Levine 3rd floor bump space
- Jack: Wednesday 2-3:30PM Living 6th floor bump space

Recap of last lecture

PRG Indistinguishability

PRG Next-Bit Unpredictability

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it is next-bit unpredictable.

One-way Functions: The Definition

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[F_{n}\left(x^{\prime}\right)=y \left\lvert\, \begin{array}{r}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x) \\
x^{\prime} \leftarrow A\left(1^{n}, y\right)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

- Can always find an inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with $m(n)=n$.

OWF Security Attempt \#2

Today's Lecture

- PRG Indistinguishability \rightarrow PRG Unpredictability
- One way functions and permutations
- OWPs \rightarrow PRGs

How to get PRG from OWF?

OWF \rightarrow PRG, Attempt \#1

Does this work?

OWF \rightarrow PRG, Attempt \#1

Consider $F_{n}(x)$ constructed from another OWF F_{n}^{\prime} :

1. Compute $y:=F_{n}^{\prime}(x)$
2. Output $y^{\prime}:=\left(y_{0}, 1, y_{1}, 1, \ldots, y_{n}, 1\right)$

Is F one-way?

Yes!

Is PRG unpredictable?
No!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

They are only hard to invert!

OWP \rightarrow PRG, Attempt \#1

Let $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way permutation

Consider the following PRG candidate

Does this work?
No, it's not expanding!
But how are outputs distributed?
Claim: Output of F is uniformly distributed

Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case.

This means that there exists some y such that
$\operatorname{Pr}\left[F(x)=y \mid x \leftarrow\{0,1\}^{n}\right]>1 / 2^{n}$
This means that $\frac{|\{x \mid F(x)=y\}|}{2^{n}}>\frac{1}{2^{n}}$,
which in turn means that F is not a permutation!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

Solution: use OWP
 Problem: no expansion

OWP \rightarrow PRG, Attempt \#2

Let $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way permutation Imagine there existed $B:\{0,1\}^{n} \rightarrow\{0,1\}$ such that the following was a PRG

What properties do we need of B ?

1. One-way: can't find k from $B(k)$
2. Pseudorandom: $B(k)$ looks like a random bit
3. Unpredictable: $B(k)$ is unpredictable given $F(k)$

Hardcore Bits

HARDCORE PREDICATE

For any $F:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, B:\{0,1\}^{n} \rightarrow\{0,1\}$ is a hardcore predicate if for every efficient A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[b=B(x) \left\lvert\, \begin{array}{r}
x \leftarrow\{0,1\}^{n} \\
b \leftarrow A(F(x))
\end{array}\right.\right]=1 / 2+\mu(n)
$$

Hardcore Predicate (in pictures)

Existence of hardcore predicates

Goldreich-Levin Theorem
Let $F:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a one-way function. Define $H(x|\mid r):=F(x)| | r$.

Then $B(x|\mid r):=\langle x, r\rangle$ is a hardcore predicate for H

Existence of hardcore predicates

Hardcore predicate for RSA
Define $F_{N, e}(x):=x^{e} \bmod N$ to be the RSA OWF.
Then $\operatorname{Isb}(x)$ is a hardcore predicate for F

OWP \rightarrow PRG

OWP \Rightarrow PRG

Theorem

Let F be a one-way permutation, and let B be a hardcore predicate for F.
Then, $G(x):=F(x) \| B(x)$ is a PRG.

Proof (next slide): Use next-bit unpredictability.

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.
Therefore, there is a next-bit predictor P, and index i, and a polynomial p such that

$$
\operatorname{Pr}\left[P\left(y_{1}, \ldots, y_{i-1}\right)=y_{i} \left\lvert\, \begin{array}{r}
x \leftarrow\{0,1\}^{n} \\
y \leftarrow G(x)
\end{array}\right.\right]=1 / 2+1 / p(n)
$$

Observation: The index i has to be $n+1$. Do you see why?

Hint: $G(x):=F(x)| | B(x)$ and we
know $F(x)$ is uniformly distributed

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG. Therefore, there is a next-bit predictor P, and polynomial p such that

$$
\operatorname{Pr}\left[P\left(y_{1}, \ldots, y_{n}\right)=y_{n+1} \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y \leftarrow G(x)
\end{array}\right.\right]=1 / 2+1 / p(n)
$$

OWP \Rightarrow PRG

Theorem: G is a PRG assuming F is a one-way permutation.

Proof: Assume for contradiction that G is not a PRG.
Therefore, there is a next-bit predictor P, and polynomial p such that

$$
\operatorname{Pr}\left[P(F(x))=B(x) \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y \leftarrow G(x)
\end{array}\right.\right]=1 / 2+1 / p(n)
$$

So, P can figure out $B(x)$ and break hardcore property! QED.

- So far: PRG with 1-bit expansion
- Resulting secret-key encryption:
- Key can be 1 bit shorter than message
- Not much better than OTP!

Can we do better?

PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

- New Proof Technique: Hybrid Arguments.

Before we go there, a puzzle...

Lemma: Let $p_{0}, p_{1}, p_{2}, \ldots, p_{m}$ be real numbers s.t.

$$
p_{m}-p_{0} \geq \varepsilon
$$

Then, there is an index i such that $p_{i}-p_{i-1} \geq \varepsilon / \mathrm{m}$.
Proof:

$$
\begin{aligned}
p_{m}-p_{0} & =\left(p_{m}-p_{m-1}\right)+\left(p_{m-1}-p_{m-2}\right)+\ldots+\left(p_{1}-p_{0}\right) \\
& \geq \varepsilon
\end{aligned}
$$

At least one of the m terms has to be at least ε / m (averaging).

Length extension: One bit to Many bits

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG
Goal: use G to generate many pseudorandom bits.

Length extension: One bit to Many bits

$$
\text { Let } G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1} \text { be a PRG }
$$

Goal: use G to generate many pseudorandom bits.
Construction of $G^{\prime}\left(s_{0}\right)$
seed $=s_{0} \longrightarrow G \xrightarrow{y_{1}=G\left(s_{0}\right)}$

Length extension: One bit to Many bits

$$
\text { Let } G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1} \text { be a PRG }
$$

Goal: use G to generate many pseudorandom bits.
Construction of $G^{\prime}\left(s_{0}\right)$
seed $=s_{0} \longrightarrow G \xrightarrow{y_{1}=b_{1}| | s_{1}}$

Length extension: One bit to Many bits

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{n+1}$ be a PRG
Goal: use G to generate many pseudorandom bits.

Construction of $G^{\prime}\left(s_{0}\right)$

Length extension: One bit to Many bits

Proof of Security (exercise):
Use next-bit (or previous-bit?) unpredictability!

Construction of $G^{\prime}\left(s_{0}\right)$

Next class

- PRFs: How to get PRGs with "exponentially-large" output

