CIS 5560

Cryptography Lecture 5

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

Announcements

- HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope
 - Covers PRGs, OWFs, and semantic security
 - Get started today and make use of office hours!
- New Office Hours:
 - Alireza: Tuesday 5-6PM Levine 3rd floor bump space
 - Jack: Wednesday 2-3:30PM Living 6th floor bump space

Recap of last lecture

PRG Indistinguishability

$$\Pr[D(\boldsymbol{G}(\boldsymbol{U}_n)) = 1] - \Pr[D(\boldsymbol{U}_m) = 1] = \boldsymbol{\varepsilon}(n)$$

PRG Next-Bit Unpredictability

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G is indistinguishable if and only if it is next-bit unpredictable.

One-way Functions: The Definition

A function (family) $\{F_n\}_{n \in \mathbb{N}}$ where $F(\cdot) : \{0,1\}^n \to \{0,1\}^{m(n)}$ is **one-way** if for every p.p.t. adversary *A*, the following holds:

$$\Pr\left[\begin{array}{c|c} x \leftarrow \{0,1\}^n \\ F_n(x') = y \\ x' \leftarrow A(1^n, y) \end{array}\right] = \operatorname{negl}(n)$$

- Can always find an inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with m(n) = n.

OWF Security Attempt #2

Today's Lecture

- PRG Indistinguishability → PRG Unpredictability
- One way functions and permutations
- OWPs \rightarrow PRGs

How to get PRG from OWF?

OWF → PRG, Attempt #1

PRG(k) 1. Output $F_n(k)$

(Assume m(n) > n)

Does this work?

OWF → PRG, Attempt #1

Consider $F_n(x)$ constructed from another OWF F'_n :

- 1. Compute $y := F'_n(x)$
- 2. Output $y' := (y_0, 1, y_1, 1, \dots, y_n, 1)$

Is F one-way?

Yes!

Is PRG unpredictable?

No!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

They are only hard to invert!

OW**P** → PRG, Attempt #1

Let $F : \{0,1\}^n \rightarrow \{0,1\}^n$ be a one-way permutation

Consider the following PRG candidate

Does this work?

No, it's not expanding!

But how are outputs distributed?

Claim: Output of *F* is uniformly distributed

Claim: Output of OWP is uniformly distributed

Proof: Assume for contradiction that this is not the case.

This means that there exists some *y* such that

 $\Pr[F(x) = y \,|\, x \leftarrow \{0,1\}^n] > 1/2^n$ This means that $\frac{\left| \{x \,|\, F(x) = y\} \right|}{2^n} > \frac{1}{2^n}$,

which in turn means that F is not a permutation!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

Solution: use OWP Problem: no expansion

$OWP \rightarrow PRG$, Attempt #2

Let $F : \{0,1\}^n \to \{0,1\}^n$ be a one-way permutation Imagine there existed $B : \{0,1\}^n \to \{0,1\}$ such that the following was a PRG $\overbrace{PRG(k)\\1.Output F(k) \mid \mid B(k)}$

What properties do we need of B?

1. One-way: can't find k from B(k)

2. Pseudorandom: B(k) looks like a random bit

3. Unpredictable: B(k) is unpredictable given F(k)

Hardcore Bits

HARDCORE PREDICATE

For any $F: \{0,1\}^n \to \{0,1\}^m$, $B: \{0,1\}^n \to \{0,1\}$ is a **hardcore predicate** if for every efficient *A*, there is a negligible function μ s.t.

$$\Pr\left[b = B(x) \middle| \begin{array}{c} x \leftarrow \{0,1\}^n \\ b \leftarrow A(F(x)) \end{array}\right] = 1/2 + \mu(n)$$

Hardcore Predicate (in pictures)

Existence of hardcore predicates

Goldreich-Levin Theorem

Let
$$F : \{0,1\}^n \to \{0,1\}^n$$
 be a one-way function.
Define $H(x | | r) := F(x) | | r$.

Then $B(x \mid \mid r) := \langle x, r \rangle$ is a hardcore predicate for H

Existence of hardcore predicates

Hardcore predicate for RSA

Define $F_{N,e}(x) := x^e \mod N$ to be the **RSA** OWF.

Then lsb(x) is a hardcore predicate for F

OWP → **PRG**

Theorem

Let *F* be a one-way permutation, and let *B* be a hardcore predicate for *F*. Then, G(x) := F(x) || B(x) is a PRG.

Proof (next slide): Use next-bit unpredictability.

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

Proof: Assume for contradiction that *G* is not a PRG. Therefore, there is a next-bit predictor P, and index *i*, and a polynomial *p* such that

$$\Pr\left[P(y_1, \dots, y_{i-1}) = y_i \middle| \begin{array}{c} x \leftarrow \{0, 1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

Observation: The index *i* has to be n + 1. Do you see why?

Hint: G(x) := F(x) || B(x) and we know F(x) is uniformly distributed

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

Proof: Assume for contradiction that *G* is not a PRG. Therefore, there is a next-bit predictor P, and polynomial p such that

$$\Pr\left[P(y_1, \dots, y_n) = y_{n+1} \middle| \begin{array}{l} x \leftarrow \{0, 1\}^n \\ y \leftarrow G(x) \end{array} \right] = 1/2 + 1/p(n)$$

Theorem: *G* is a PRG assuming *F* is a one-way permutation.

Proof: Assume for contradiction that *G* is not a PRG. Therefore, there is a next-bit predictor P, and polynomial p such that

$$\Pr\left[P(F(x)) = B(x) \middle| \begin{array}{c} x \leftarrow \{0,1\}^n \\ y \leftarrow G(x) \end{array}\right] = 1/2 + 1/p(n)$$

So, *P* can figure out B(x) and break hardcore property! QED.

So far: PRG with 1-bit expansion

- Resulting secret-key encryption:
 - Key can be 1 bit shorter than message
 - Not much better than OTP!

Can we do better?

PRG length extension.

Theorem: If there is a PRG that stretches by one bit, there is one that stretches by poly many bits

Before we go there, a puzzle...

Lemma: Let $\underline{p}_0, \underline{p}_1, \underline{p}_2, \dots, \underline{p}_m$ be real numbers s.t. $p_m - p_0 \ge \varepsilon$.

Then, there is an index *i* such that $p_i - p_{i-1} \ge \epsilon/m$.

Proof:

$$p_m - p_0 = (p_m - p_{m-1}) + (p_{m-1} - p_{m-2}) + \dots + (p_1 - p_0)$$

$$\geq \epsilon$$

At least one of the *m* terms has to be at least ε/m (averaging).

Let $G : \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG

Goal: use *G* to generate **many** pseudorandom bits.

Let $G : \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG

Goal: use *G* to generate **many** pseudorandom bits.

<u>Construction of $G'(s_0)$ </u>

seed =
$$s_0 \longrightarrow G \xrightarrow{y_1 = G(s_0)}$$

Let $G : \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG

Goal: use *G* to generate **many** pseudorandom bits.

<u>Construction of $G'(s_0)$ </u>

seed =
$$s_0 \longrightarrow G \xrightarrow{y_1 = b_1 || s_1}$$

Let $G : \{0,1\}^n \to \{0,1\}^{n+1}$ be a PRG

Goal: use G to generate **many** pseudorandom bits.

<u>Construction of $G'(s_0)$ </u>

Proof of Security (exercise):

Use next-bit (or previous-bit?) unpredictability!

Construction of $G'(s_0)$

Next class

• PRFs: How to get PRGs with "exponentially-large" output