CIS 5560

Cryptography
 Lecture 4

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 2 is out; due Monday, Feb 5 at 5PM on Gradescope
- Covers PRGs, OWFs, and semantic security
- Get started today and make use of office hours!
- Cryptography related CIS Colloquium today after class
- See what high level cryptography research looks like!
- Bonus point on this week's homework if you attend!

Recap of last lecture

Key Notion: Secret-key Encryption

 (or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

- Key Generation Algorithm: $\operatorname{Gen}\left(1^{k}\right) \rightarrow k$
- Encryption Algorithm: $\operatorname{Enc}(k, m) \rightarrow c$
- Decryption Algorithm: $\operatorname{Dec}(k, c) \rightarrow m$

Semantic Security

Ans: we'll let Eve choose the messages!

PRG \Longrightarrow Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n-bit key)

- $\operatorname{Gen}\left(1^{k}\right) \rightarrow k:$
- Sample an n-bit string at random.
- $\operatorname{Enc}(k, m) \rightarrow c:$
- Expand k to an $n+1$-bit string using PRG: $s=G(k)$
- Output $c=s \oplus m$
- $\operatorname{Dec}(k, c) \rightarrow m:$
- Expand k to an $n+1$-bit string using PRG: $s=G(k)$
- Output $m=s \oplus c$

Correctness:

$\operatorname{Dec}(k, c)$ outputs $G(k) \oplus c=G(k) \oplus G(k) \oplus m=m$

Distinguisher $D(y)$:

1. Get two messages m_{0}, m_{1}, from Eve and sample a bit b
2. Compute $b^{\prime} \leftarrow \operatorname{Eve}\left(y \oplus m_{b}\right)$
3. If $b^{\prime}=b$, output "PRG"
4.Otherwise, output "Random"

\quad World 0
$\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is pseudorandom $]$
$=$
$=$
$=\rho \geq 1 / 2+1 / p(n)$

World 1

$\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is random $]$
$=\operatorname{Pr}\left[\right.$ Eve outputs $b^{\prime}=b \mid y$ is random $]$
$=\rho^{\prime}=1 / 2$

Therefore,
$\mid \operatorname{Pr}[D$ outputs "PRG" $\mid y$ is pseudorandom $]-\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is random]
$\geq 1 / p(n)$

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")
2. Come up with a candidate construction
3. Do extensive cryptanalysis.

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.
"Science wins either way" -Silvio Micali

Today's Lecture

- PRG Indistinguishability \rightarrow PRG Unpredictability
- One way functions and permutations
- OWPs \rightarrow PRGs

PRG Indistinguishability

PRG Next-Bit Unpredictability

PRG Def 2: Next-bit Unpredictability

Definition [Next-bit Unpredictability]:

A deterministic polynomial-time computable function G : $\{0,1\}^{n}$
$\rightarrow\{0,1\} \mathrm{m}$ is next-bit unpredictable if:
for every PPT algorithm P (called a next-bit predictor) and every $i \in\{1, \ldots, m\}$, if there is a negligible function μ such that:

$$
\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right]=\frac{1}{2}+\mu(n)
$$

Notation: $\boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, \ldots \boldsymbol{y}_{m}$ are the bits of the m-bit string \boldsymbol{y}.

Def 1 and Def 2 are Equivalent

Theorem:
A PRG G is indistinguishable if and only if it is next-bit unpredictable.

Def 1 and Def 2 are Equivalent

Theorem:

A PRG G passes all PPT distinguishers if and only if it passes PPT next-bit distinguishers.

NBU and Indistinguishability

- Next-bit Unpredictability (NBU): Seemingly much weaker requirement. Only says that next bit predictors, a particular type of distinguishers, cannot succeed.
- Yet, surprisingly, Next-bit Unpredictability (NBU) = Indistinguishability.
- NBU often much easier to use.

1. Indistinguishability \Longrightarrow NBU

Proof: by contradiction.

Suppose for contradiction that there is a p.p.t. predictor P, a polynomial function p and an $i \in\{1, \ldots, m\}$ s.t.
$\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \geq \frac{1}{2}+1 / p(n)$
Then, I claim that P essentially gives us a distinguisher D!
Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 ("PRG") else output 0 ("Random").

If P is p.p.t. so is D.

1. Indistinguishability \Longrightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

We want to show: there is a polynomial p^{\prime} s.t.

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
& -\operatorname{Pr}[y \leftarrow U m: D(y)=1] \mid \geq 1 / p^{\prime}(n)
\end{aligned}
$$

1. Indistinguishability \Longrightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

$$
\begin{aligned}
& \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \\
= & \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \\
\geq & \text { (by construction of } \mathrm{D}) \\
\geq & \frac{1}{2}+1 / p(n)
\end{aligned} \quad \text { (by assumption on } \mathrm{P} \text {) }
$$

1. Indistinguishability \Longrightarrow NBU

Consider D which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 (= "PRG") else output 0 (= "Random").

$$
\begin{aligned}
& \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] \geq \frac{1}{2}+1 / p(n) \\
& \operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right] \\
= & \operatorname{Pr}\left[y \leftarrow U_{m}: P\left(y_{1} y_{2} \ldots y_{i-1}\right)=y_{i}\right] \quad \\
= & \frac{1}{2} \quad \text { (by construction of } \mathrm{D} \text {) }
\end{aligned}
$$

1. Indistinguishability \Longrightarrow NBU

Consider \bar{D} which gets an m-bit string y and does the following:

1. Run P on the $(i-1)$-bit prefix $y_{1} y_{2} \ldots y_{i-1}$.
2. If P returns the i-th bit y_{i}, then output 1 ($=$ "PRG") else output 0 (= "Random").

$$
\begin{array}{ll}
\operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right] & \geq \frac{1}{2}+1 / p(n) \\
\operatorname{Pr}\left[y \leftarrow U_{m}: D(y)=1\right]= & \frac{1}{2}
\end{array}
$$

So, $\mid \operatorname{Pr}\left[y \leftarrow G\left(U_{n}\right): D(y)=1\right]$

$$
-\operatorname{Pr}[y \leftarrow U m: D(y)=1] \mid \geq 1 / p(n)
$$

Today's Lecture

- PRG Indistinguishability \rightarrow PRG Unpredictability
- How to construct PRGs?
- One way functions and permutations
- OWPs \rightarrow PRGs

One-way Functions (Informally)

Source of all hard problems in cryptography!

What is a good definition?

OWF Security Attempt \#1

One-way Functions (Take 1)

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[A\left(1^{n}, y\right)=x \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

Consider $F_{n}(x)=0$ for all x.
This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has unbounded time.

Conclusion: not a useful/meaningful definition.

OWF Security Attempt \#2

One-way Functions (Take 1)

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[A\left(1^{n}, y\right)=x \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

The Right Definition: Impossible to find an inverse efficiently.

OWF Security Attempt \#2

One-way Functions: The Definition

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[F_{n}\left(x^{\prime}\right)=y \left\lvert\, \begin{array}{r}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x) \\
x^{\prime} \leftarrow A\left(1^{n}, y\right)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

- Can always find an inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with $m(n)=n$.

How to get PRG from OWF?

OWF \rightarrow PRG, Attempt \#1

Does this work?

OWF \rightarrow PRG, Attempt \#1

Consider $F_{n}(x)$ constructed from another OWF F_{n}^{\prime} :

1. Compute $y:=F_{n}^{\prime}(x)$
2. Output $y^{\prime}:=\left(y_{0}, 1, y_{1}, 1, \ldots, y_{n}, 1\right)$

Is F one-way?

Yes!

Is PRG unpredictable?
No!

Our problem:

OWFs don't tell us anything about how their outputs are distributed.

They are only hard to invert!

Hardcore Bits

If F is a one-way function, we know it's hard to compute a pre-image of $F(x)$ for a randomly chosen x.

How about computing partial information about an inverse?

Exercise: There are one-way functions for which it is easy to compute the first half of the bits of an inverse.

Hardcore Bits

HARDCORE PREDICATE (Definition)

For any function (family) $F:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, a function $B:\{0,1\}^{n} \rightarrow\{0,1\}$ is a hardcore predicate if for every p.p.t. adversary A, there is a negligible function μ s.t.

$$
\operatorname{Pr}\left[x \leftarrow\{0,1\}^{n} ; y=F(x): A(y)=B(x)\right] \leq \frac{1}{2}+\mu(n)
$$

Hardcore Predicate (in pictures)

Next class

- How to get randomness from OWF output
- How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with "exponentially-large" output

