CIS 5560

Cryptography Lecture 3

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope
- Covers OTPs and negligible functions (this class)
- Get started today and make use of office hours!
- Cryptography related CIS Colloquium on Tuesday (1/30) after class
- See what high level cryptography research looks like!
- Bonus point on next week's homework if you attend!

Recap of last lecture

Secure Communication

Alice wants to send a message m to Bob without revealing it to Eve.

Key Notion: Secret-key Encryption

 (or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

- Key Generation Algorithm: $\operatorname{Gen}\left(1^{k}\right) \rightarrow k$
- Encryption Algorithm: $\operatorname{Enc}(k, m) \rightarrow c$
- Decryption Algorithm: $\operatorname{Dec}(k, c) \rightarrow m$

Life
 The Axiom of Aloctern Crypto

Feasible Computation = randomized polynomial-time* algorithms
(D.p.t. = Probabilistic polynomial-time)
(polynomial in a security parameter n)

Computational Indistinguishability

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is arbitrary PPT distinguisher.
She needs to decide whether c came from World 0 or World 1.
For every PPT Eve, there exists a negligible fn ε, st for all m_{0}, m_{1},

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)<\begin{gathered}
\text { Called } \\
\text { "advantage" }
\end{gathered}
$$

New Notion: Negligible Functions

Functions that grow slower than $1 / p(n)$ for any polynomial p.

Definition: A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t. for all $n>n_{0}$: $\varepsilon(n)<\frac{1}{p(n)}$

Key property: Events that occur with negligible probability look to poly-time algorithms like they never occur.

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function

$$
G:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \text { is a PRG if: }
$$

(a) It is expanding: $m>n$ and
(b) for every PPT algorithm D (called a distinguisher) if there is a negligible function ε such that:

$$
\left|\operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{m}\right)=1\right]\right|=\varepsilon(n)
$$

Notation: U_{n} (resp. U_{m}) denotes the random distribution on n-bit (resp. m-bit) strings; m is shorthand for $m(n)$.

Today's Lecture

- Semantic security
- PRGs \rightarrow Semantically-secure encryption
- Constructions of PRGs
- Real-world schemes
- Theoretical constructions

Semantic Security

For every PPT Eve, there exists a negligible fn ε, st for all m_{0}, m_{1},

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c:=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

Last time, we briefly discussed that we can view this as a game between a "challenger" and the adversary Eve. Let's flesh that out.

Semantic Security

Semantic Security

We had a good question last time: how does Eve even know what the choices for m_{0}, m_{1} are?

Semantic Security

Ans: we'll let Eve choose the messages!

Semantic Security

For every PPT Eve, there exists a negligible fn ε such that

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
\left(m_{0}, m_{1}\right) \leftarrow E v e \\
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c:=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

Semantic Security

For every PPT Eve, there exists a negligible fn ε such that

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
\left(m_{0}, m_{1}\right) \leftarrow E v e \\
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c:=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

Why is this the "right" definition?
Intuitively: even if Eve knows which messages are candidate plaintexts, ciphertext still reveals no information!

PRGs \rightarrow Semantically Secure Encryption

PRG \Longrightarrow Semantically Secure Encryption

(or, How to Encrypt $n+1$ bits using an n-bit key)

- $\operatorname{Gen}\left(1^{k}\right) \rightarrow k:$
- Sample an n-bit string at random.
- $\operatorname{Enc}(k, m) \rightarrow c:$
- Expand k to an $n+1$-bit string using PRG: $s=G(k)$
- Output $c=s \oplus m$
- $\operatorname{Dec}(k, c) \rightarrow m:$
- Expand k to an $n+1$-bit string using PRG: $s=G(k)$
- Output $m=s \oplus c$

Correctness:

$\operatorname{Dec}(k, c)$ outputs $G(k) \oplus c=G(k) \oplus G(k) \oplus m=m$

PRG \Longrightarrow Semantically Secure Encryption

Security: your first reduction!

Suppose for contradiction that there exists an Eve that breaks our scheme.
That, is assume that there is a p.p.t. Eve, and polynomial function p s.t.

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b\left[\begin{array}{r}
\left(m_{0}, m_{1}\right) \leftarrow \mathrm{Eve} \\
k \leftarrow \mathscr{R} \\
b \leftarrow\{0,1\} \\
c:=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right]>\frac{1}{2}+1 / p(n)\right.
$$

PRG \Longrightarrow Semantically Secure Encryption

Security: your first reduction!

Assume that there is a p.p.t. Eve, a polynomial function p and m_{0}, m_{1} s.t.

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b\left[\begin{array}{r}
\left(m_{0}, m_{1}\right) \leftarrow \mathrm{Eve} \\
k \leftarrow\{0,1\}^{n} \\
b \leftarrow\{0,1\} \\
c:=G(k) \oplus m_{b}
\end{array}\right]>\frac{1}{2}+1 / p(n)\right.
$$

Compare with $\operatorname{Pr}\left[\operatorname{Eve}(c)=b\left[\begin{array}{r}\left(m_{0}, m_{1}\right) \leftarrow \mathrm{Eve} \\ k^{\prime} \leftarrow\{0,1\}^{n+1} \\ b \leftarrow\{0,1\} \\ c:=k^{\prime} \oplus m_{b}\end{array}\right]=\frac{1}{2}\right.$

Clearly, Eve can break security in PRG case, but not in OTP world!

Eve can distinguish pseudorandom from random!
Idea: Use Eve to break PRG indistinguishability!

Distinguisher $D(y)$:

1. Sample two messages m_{0}, m_{1}, and a bit b
2. Compute $b^{\prime} \leftarrow \operatorname{Eve}\left(y \oplus m_{b}\right)$
3. If $b^{\prime}=b$, output "PRG"
4. Otherwise, output "Random"

World 0

$\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is pseudorandom $]$
$=\operatorname{Pr}\left[\right.$ Eve outputs $b^{\prime}=b \mid y$ is pseudorandom $]$
$=\rho \geq 1 / 2+1 / p(n)$

World 1

$\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is random] $=\operatorname{Pr}\left[\right.$ Eve outputs $b^{\prime}=b \mid y$ is random $]$
$=\rho^{\prime}=1 / 2$

Therefore,
$\mid \operatorname{Pr}[D$ outputs "PRG" $\mid y$ is pseudorandom $]-\operatorname{Pr}[D$ outputs "PRG" $\mid y$ is random]
$\geq 1 / p(n)$

PRG \Longrightarrow Semantically Secure Encryption

(or, How to Encrypt $\mathrm{n}+1$ bits using an n -bit key)

Q1: Do PRGs exist?
(Exercise: If $\mathrm{P}=\mathrm{NP}, \mathrm{PRGs}$ do not exist.)
Q2: How do we encrypt longer messages or many messages with a fixed key?
(Length extension: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)
(Pseudorandom functions: PRGs with exponentially large stretch and "random access" to the output.)

Q1: Do PRGs exist?

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")
2. Come up with a candidate construction

Rijndael
(now the Advanced
Encryption Standard)

Constructing PRGs: Two Methodologies

The Practical Methodology

1. Start from a design framework
(e.g. "appropriately chosen functions composed appropriately many times look random")
2. Come up with a candidate construction
3. Do extensive cryptanalysis.

Examples

- RC4: old PRG from 1987
- Proposed by Ron Rivest (of RSA fame)
- Fast and simple
- Used in TLS till 2013
- However lots of biases
- e.g. 2nd byte of output has 2/256 chance of being 0 .
- In 2013, attack which made key recovery feasible with just 2^{20} ciphertexts!
- Finally deprecated in 2015, 28 years after creation!

Constructing PRGs: Two Methodologies

The Foundational Methodology (much of this course)

Reduce to simpler primitives.
"Science wins either way" -Silvio Micali

One-way Functions (Informally)

Source of all hard problems in cryptography!

What is a good definition?

One-way Functions (Take 1)

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[A\left(1^{n}, y\right)=x \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

Consider $F_{n}(x)=0$ for all x.
This is one-way according to the above definition.
In fact, impossible to find the inverse even if A has unbounded time.

Conclusion: not a useful/meaningful definition.

One-way Functions (Take 1)

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[A\left(1^{n}, y\right)=x \left\lvert\, \begin{array}{c}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

The Right Definition: Impossible to find an inverse efficiently.

One-way Functions: The Definition

A function (family) $\left\{F_{n}\right\}_{n \in \mathbb{N}}$ where $F(\cdot):\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is one-way if for every p.p.t. adversary A, the following holds:

$$
\operatorname{Pr}\left[F_{n}\left(x^{\prime}\right)=y \left\lvert\, \begin{array}{r}
x \leftarrow\{0,1\}^{n} \\
y:=F_{n}(x) \\
x^{\prime} \leftarrow A\left(1^{n}, y\right)
\end{array}\right.\right]=\operatorname{negl}(n)
$$

- Can always find an inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

One-way Permutations:

One-to-one one-way functions with $m(n)=n$.

How to get PRG from OWF?

OWF \rightarrow PRG, Attempt \#1

Does this work?

OWF \rightarrow PRG, Attempt \#1

Consider $F_{n}(x)$ constructed from another OWF F_{n}^{\prime} :

1. Compute $y:=F_{n}^{\prime}(x)$
2. Output $y^{\prime}:=\left(y_{0}, 1, y_{1}, 1, \ldots, y_{n}, 1\right)$

Is F one-way?

Yes!

Is PRG unpredictable?
No!

Our problem:

OWFs don't tell us anything about how their inputs are distributed

They are only hard to invert

Next class

- How to get randomness from OWF output
- How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with "exponentially-large" output

