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CIS 5560

Lecture 3
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope


• Covers OTPs and negligible functions (this class)

• Get started today and make use of office hours!


• Cryptography related CIS Colloquium on Tuesday (1/30) 
after class

• See what high level cryptography research looks like!

• Bonus point on next week’s homework if you attend!
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Recap of last lecture
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Secure Communication

Key k Key k

Eavesdropper “Eve”

m
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Alice wants to send a message  to Bob without revealing it to Eve. m



Key Notion: Secret-key Encryption	 

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 5

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞



The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life
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For every PPT Eve, there exists a negligible fn , st for all , 


                             

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Computational Indistinguishability

Called 
“advantage”



New Notion: Negligible Functions
Functions that grow slower than  for any polynomial . 1/p(n) p

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look 
to poly-time algorithms like they never occur. 
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PRG Def 1: Indistinguishability

Notation:  (resp. ) denotes the random distribution 
on -bit (resp. -bit) strings;  is shorthand for .

Un Um
n m m m(n)

Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



Today’s Lecture
• Semantic security

• PRGs → Semantically-secure encryption

• Constructions of PRGs


• Real-world schemes

• Theoretical constructions
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Semantic Security

Last time, we briefly discussed that we can view 
this as a game between a “challenger” and the 
adversary Eve. Let’s flesh that out.
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For every PPT Eve, there exists a negligible fn , st for all , 


                             

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′ 

Eve

c

b′ 



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′ 

Eve

c

b′ 

We had a good question last time: how does Eve 
even know what the choices for  are?m0, m1



Semantic Security
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Challenger

1.
2.
3.

4. 

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′ 

Eve

c

b′ 

Ans: we’ll let Eve choose the messages!

m0, m1



Semantic Security
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For every PPT Eve, there exists a negligible fn  such that
ε

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← Eve
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)



Semantic Security
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For every PPT Eve, there exists a negligible fn  such that
ε

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← Eve
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

Why is this the “right” definition?

Intuitively: even if Eve knows which 
messages are candidate plaintexts, 

ciphertext still reveals no information!



PRGs → Semantically Secure Encryption
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PRG  Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand  to an -bit string using PRG: 

o Output 

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :


o Expand  to an -bit string using PRG: 

o Output 

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:
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Suppose for contradiction that there exists an Eve that breaks our scheme. 


That, is assume that there is a p.p.t. Eve, and polynomial function  s.t.


 

	 	 	

p

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

>
1
2

+1/p(n)

Security: your first reduction!

PRG  Semantically Secure Encryption⟹
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Assume that there is a p.p.t. Eve, a polynomial function  and  s.t.
p m0, m1

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← {0,1}n

b ← {0,1}
c := G(k) ⊕ mb

>
1
2

+1/p(n)

Security: your first reduction!

Compare with Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k′ ← {0,1}n+1

b ← {0,1}
c := k′ ⊕ mb

=
1
2

Let’s call this ρ′ 

Let’s call this ρ

PRG  Semantically Secure Encryption⟹
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Clearly, Eve can break security in 
PRG case, but not in OTP world!

↓
Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!
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World 0 
     




Pr[D outputs "PRG" | y is pseudorandom]

= Pr[𝖤𝗏𝖾 outputs b′ = b | y is pseudorandom]
= ρ ≥ 1/2 + 1/p(n)

Therefore, 


Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is random]

≥ 1/𝑝(𝑛)

World 1 
     




Pr[D outputs "PRG" | y is random]

= Pr[𝖤𝗏𝖾 outputs b′ = b | y is random]
= ρ′ = 1/2

Distinguisher :

1. Sample two messages , and a bit 

2. Compute  

3. If , output “PRG”

4. Otherwise, output “Random”

D(y)
m0, m1 b

b′ ← 𝖤𝗏𝖾(y ⊕ mb)
b′ = b
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𝑸𝟏:  Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:  

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many 
messages with a fixed key?

(Length extension: If there is a PRG  that stretches by one 
bit, there is one that stretches by polynomially many bits) 

(Pseudorandom functions: PRGs with exponentially large 
stretch and “random access” to the output.)

PRG  Semantically Secure Encryption⟹
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𝑸𝟏:  Do PRGs exist?
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael  
(now the Advanced 
Encryption Standard)
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Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately 
many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis. 
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Examples
• RC4: old PRG from 1987 

• Proposed by Ron Rivest (of RSA fame) 
• Fast and simple 
• Used in TLS till 2013

• However lots of biases


• e.g. 2nd byte of output has 2/256 chance of being 0.

• In 2013, attack which made key recovery feasible with just 

220 ciphertexts!

• Finally deprecated in 2015, 28 years after creation!
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Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital 
Signatures
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One-way Functions (Informally)
F

domain
range

Easy to  
compute

Hard to  
invert
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Source of all hard problems in cryptography!



What is a good definition?



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

Consider  for all . 𝑭𝒏(𝒙) = 𝟎 x
This is one-way according to the above definition.  
In fact, impossible to find the inverse even if  has 
unbounded time.

𝐴

Conclusion: not a useful/meaningful definition. 32



One-way Functions (Take 1)

A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)
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The Right Definition: Impossible to find an inverse efficiently.



One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with  𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic 

polynomial time
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A function (family)  where  is 
one-way if for every p.p.t. adversary , the following holds:


{Fn}n∈ℕ F( ⋅ ) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′ ) = y
x ← {0,1}n

y := Fn(x)
x′ ← A(1n, y)

= negl(n)



How to get PRG from OWF?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume )m(n) > n

Does this work?



1. Output 

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider  constructed from another OWF :


1. Compute 


2. Output 

Fn(x) F′ n

y := F′ n(x)
y′ := (y0, 1,y1, 1,…, yn, 1)

Is  one-way?F

Yes!

Is  unpredictable?𝖯𝖱𝖦

No!



Our problem: 

OWFs don’t tell us anything about 
how their inputs are distributed


They are only hard to invert



Next class
• How to get randomness from OWF output


• How to use this to get PRGs

• How to extend the length of PRGs

• How to get PRGs with “exponentially-large” output
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