### **CIS 5560**

# Cryptography Lecture 3

**Course website:** 

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

# Announcements

- HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope
  - Covers OTPs and negligible functions (this class)
  - Get started today and make use of office hours!
- Cryptography related CIS Colloquium on Tuesday (1/30) after class
  - See what high level cryptography research looks like!
  - Bonus point on next week's homework if you attend!

# Recap of last lecture

## **Secure Communication**



#### Alice wants to send a message *m* to Bob without revealing it to Eve.



• Key Generation Algorithm:  $Gen(1^k) \rightarrow k$ 

• **Encryption Algorithm:**  $Enc(k, m) \rightarrow c$ 

• **Decryption Algorithm:**  $Dec(k, c) \rightarrow m$ 

## Life The Axiom of <del>Modern Crypt</del>o

Feasible Computation = randomized polynomial-time\* algorithms (**p.p.t.** = Probabilistic polynomial-time) (polynomial in a security parameter n)

# **Computational Indistinguishability**

World 0:  
$$k \leftarrow \mathcal{K}$$
  
 $c = \operatorname{Enc}(k, m_0)$ World 1:  
 $k \leftarrow \mathcal{K}$   
 $c = \operatorname{Enc}(k, m_1)$ 



Eve is arbitrary **PPT distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every **PPT** Eve, there exists a negligible fn  $\varepsilon$ , st for all  $m_0, m_1$ ,  $\Pr\left[ Eve(c) = b \begin{vmatrix} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c = Enc(k, m_b) \end{vmatrix} < \frac{1}{2} + \varepsilon(n) \checkmark Called$ "advantage"

# **New Notion: Negligible Functions**

Functions that grow slower than 1/p(n) for any polynomial *p*.

```
Definition: A function \varepsilon : \mathbb{N} \to \mathbb{R} is negligible if
for every polynomial function p,
there exists an n_0 s.t.
for all n > n_0:
\varepsilon(n) < \frac{1}{p(n)}
```

**Key property:** Events that occur with negligible probability look **to poly-time algorithms** like they **never** occur.

# PRG Def 1: Indistinguishability

**Definition [Indistinguishability]:** 

A deterministic polynomial-time computable function

 $G: \{0,1\}^n \to \{0,1\}^m$  is a **PRG** if:

(a) It is expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a negligible function  $\varepsilon$  such that:

 $\Pr[D(\boldsymbol{G}(\boldsymbol{U}_n)) = 1] - \Pr[D(\boldsymbol{U}_m) = 1] = \boldsymbol{\varepsilon}(n)$ 

Notation:  $U_n$  (resp.  $U_m$ ) denotes the random distribution on *n*-bit (resp. *m*-bit) strings; *m* is shorthand for m(n).

# Today's Lecture

- Semantic security
- PRGs → Semantically-secure encryption
- Constructions of PRGs
  - Real-world schemes
  - Theoretical constructions

For every **PPT** Eve, there exists a negligible fn  $\varepsilon$ , st for all  $m_0, m_1$ ,  $\Pr\left[ \left. \begin{array}{c} \operatorname{Eve}(c) = b \\ c \end{array} \right| \begin{array}{c} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c := \operatorname{Enc}(k, m_b) \end{array} \right] < \frac{1}{2} + \varepsilon(n)$ 

Last time, we briefly discussed that we can view this as a game between a "challenger" and the adversary Eve. Let's flesh that out.





We had a good question last time: how does Eve even know what the choices for  $m_0, m_1$  are?



Ans: we'll let Eve choose the messages!

For every **PPT** Eve, there exists a negligible fn  $\varepsilon$  such that  $\Pr\left[ \text{Eve}(c) = b \begin{vmatrix} (m_0, m_1) \leftarrow Eve \\ k \leftarrow \mathcal{K} \\ b \leftarrow \{0, 1\} \\ c := \text{Enc}(k, m_b) \end{vmatrix} < \frac{1}{2} + \varepsilon(n)$ 

For every **PPT** Eve, there exists a negligible fn  $\varepsilon$  such that

$$\Pr\left[ \mathsf{Eve}(c) = b \middle| \begin{array}{c} (m_0, m_1) \leftarrow Eve \\ k \leftarrow \mathcal{K} \\ b \leftarrow \{0, 1\} \\ c := \mathsf{Enc}(k, m_b) \end{array} \right] < \frac{1}{2} + \varepsilon(n)$$

Why is this the "right" definition?

Intuitively: even if Eve knows which messages are candidate plaintexts, ciphertext *still* reveals no information!

# PRGs → Semantically Secure Encryption

(or, How to Encrypt n+1 bits using an n-bit key)

- $\operatorname{Gen}(1^k) \to k$ :
  - Sample an *n*-bit string at random.
- $\operatorname{Enc}(k,m) \to c$ :
  - Expand k to an n + 1-bit string using PRG: s = G(k)
  - Output  $c = s \oplus m$
- $Dec(k, c) \rightarrow m$ :
  - Expand k to an n + 1-bit string using PRG: s = G(k)
  - Output  $m = s \oplus c$

### **Correctness:**

Dec(k, c) outputs  $G(k) \oplus c = G(k) \oplus G(k) \oplus m = m$ 

### **Security: your first reduction!**

Suppose for contradiction that there exists an Eve that breaks our scheme.

That, is assume that there is a p.p.t. Eve, and polynomial function p s.t.

$$\Pr\left[\operatorname{Eve}(c) = b \begin{vmatrix} (m_0, m_1) \leftarrow \operatorname{Eve} \\ k \leftarrow \mathcal{K} \\ b \leftarrow \{0, 1\} \\ c := \operatorname{Enc}(k, m_b) \end{vmatrix} > \frac{1}{2} + 1/p(n)$$

### **Security: your first reduction!**

Assume that there is a p.p.t. Eve, a polynomial function p and  $m_0, m_1$  s.t.

$$\Pr\left[\operatorname{Eve}(c) = b \left| \begin{array}{c} (m_0, m_1) \leftarrow \operatorname{Eve} \\ k \leftarrow \{0,1\}^n \\ b \leftarrow \{0,1\} \\ c := G(k) \oplus m_b \end{array} \right| > \frac{1}{2} + 1/p(n) \right]$$

$$\operatorname{Compare with} \Pr\left[\operatorname{Eve}(c) = b \left| \begin{array}{c} (m_0, m_1) \leftarrow \operatorname{Eve} \\ k' \leftarrow \{0,1\}^{n+1} \\ b \leftarrow \{0,1\} \\ c := k' \oplus m_b \end{array} \right] = \frac{1}{2}$$

$$\operatorname{Let's call this } \rho' \right] \qquad 20$$

Clearly, Eve can break security in PRG case, but not in OTP world!

Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!

### Distinguisher D(y):

1. Sample two messages  $m_0, m_1$ , and a bit b

- 2. Compute  $b' \leftarrow \mathsf{Eve}(y \oplus m_b)$
- 3. If b' = b, output "PRG"
- 4. Otherwise, output "Random"

#### World 0

 $\begin{array}{l} \Pr[D \text{ outputs "PRG"} \mid y \text{ is pseudorandom}] \\ = \Pr[\mathsf{Eve outputs } b' = b \mid y \text{ is pseudorandom}] \\ = \rho \geq 1/2 + 1/p(n) \end{array}$ 

#### World 1

 $Pr[D \text{ outputs "PRG"} | y \text{ is random}] = Pr[Eve \text{ outputs } b' = b | y \text{ is random}] = \rho' = 1/2$ 

### Therefore, $|\Pr[D \text{ outputs "PRG"} | y \text{ is pseudorandom}] - \Pr[D \text{ outputs "PRG"} | y \text{ is random}]$ $\geq 1/p(n)$

(or, How to Encrypt n+1 bits using an n-bit key)

**Q1**: Do PRGs exist?

(Exercise: If P=NP, PRGs do not exist.)

**Q2:** How do we encrypt longer messages or many messages with a fixed key?

(Length extension: If there is a PRG that stretches by one bit, there is one that stretches by polynomially many bits)

(**Pseudorandom functions**: PRGs with exponentially large stretch and "random access" to the output.)

### **Q1**: Do PRGs exist?

### **The Practical Methodology**

#### 1. Start from a design framework

(e.g. "appropriately chosen functions composed appropriately many times look random")



### **The Practical Methodology**

### 1. Start from a design framework

(e.g. "appropriately chosen functions composed appropriately many times look random")

### 2. Come up with a candidate construction



### **The Practical Methodology**

 Start from a design framework
 (e.g. "appropriately chosen functions composed appropriately many times look random")

2. Come up with a candidate construction

3. Do extensive cryptanalysis.



# Examples

- RC4: old PRG from 1987
  - Proposed by Ron Rivest (of RSA fame)
  - Fast and simple
  - Used in TLS till 2013
  - However lots of biases
    - e.g. 2nd byte of output has 2/256 chance of being 0.
  - In 2013, attack which made key recovery feasible with just 2<sup>20</sup> ciphertexts!
  - Finally deprecated in 2015, 28 years after creation!

### The Foundational Methodology (much of this course)

**Reduce to simpler primitives.** 

"Science wins either way" -Silvio Micali



well-studied, average-case hard, problems

# **One-way Functions (Informally)**



Source of all hard problems in cryptography!

## What is a good definition?

# **One-way Functions (Take 1)**

A function (family)  $\{F_n\}_{n \in \mathbb{N}}$  where  $F(\cdot) : \{0,1\}^n \to \{0,1\}^{m(n)}$  is **one-way** if for every p.p.t. adversary *A*, the following holds:

$$\Pr\left[A(1^n, y) = x \middle| \begin{array}{l} x \leftarrow \{0, 1\}^n \\ y := F_n(x) \end{array}\right] = \operatorname{negl}(n)$$

Consider  $F_n(x) = 0$  for all x.

This is one-way according to the above definition. In fact, impossible to find *the* inverse even if A has unbounded time.

Conclusion: not a useful/meaningful definition.

## **One-way Functions (Take 1)**

A function (family)  $\{F_n\}_{n \in \mathbb{N}}$  where  $F(\cdot) : \{0,1\}^n \to \{0,1\}^{m(n)}$  is **one-way** if for every p.p.t. adversary *A*, the following holds:

$$\Pr\left[A(1^n, y) = x \middle| \begin{array}{l} x \leftarrow \{0, 1\}^n \\ y := F_n(x) \end{array}\right] = \operatorname{negl}(n)$$

The Right Definition: Impossible to find an inverse efficiently.

## **One-way Functions: The Definition**

A function (family)  $\{F_n\}_{n \in \mathbb{N}}$  where  $F(\cdot) : \{0,1\}^n \to \{0,1\}^{m(n)}$  is **one-way** if for every p.p.t. adversary *A*, the following holds:

$$\Pr\left[\begin{array}{c|c} x \leftarrow \{0,1\}^n \\ F_n(x') = y \\ x' \leftarrow A(1^n, y) \end{array}\right] = \operatorname{negl}(n)$$

- Can always find an inverse with unbounded time
- ... but should be hard with probabilistic polynomial time

#### **One-way Permutations:**

One-to-one one-way functions with m(n) = n.

# How to get PRG from OWF?

# OWF → PRG, Attempt #1

PRG(k) 1. Output  $F_n(k)$ 

(Assume m(n) > n)

Does this work?

# OWF → PRG, Attempt #1

Consider  $F_n(x)$  constructed from another OWF  $F'_n$ :

- 1. Compute  $y := F'_n(x)$
- 2. Output  $y' := (y_0, 1, y_1, 1, \dots, y_n, 1)$



Is F one-way?

Yes!

Is PRG unpredictable?

No!

## Our problem:

# OWFs don't tell us anything about how their inputs are distributed

They are only hard to invert

# Next class

- How to get randomness from OWF output
  - How to use this to get PRGs
- How to extend the length of PRGs
- How to get PRGs with "exponentially-large" output