
1

CIS 5560

Lecture 3
Cryptography

Course website:
pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/

Announcements
• HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope

• Covers OTPs and negligible functions (this class)

• Get started today and make use of office hours!

• Cryptography related CIS Colloquium on Tuesday (1/30)
after class

• See what high level cryptography research looks like!

• Bonus point on next week’s homework if you attend!

2

Recap of last lecture

3

Secure Communication

Key k Key k

Eavesdropper “Eve”

m

4

Alice wants to send a message to Bob without revealing it to Eve. m

Key Notion: Secret-key Encryption	

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 5

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution) ℳ

Key space 𝒦

Ciphertext space 𝒞

The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life

6

For every PPT Eve, there exists a negligible fn , st for all ,

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether came from World 0 or World 1.c

7

Computational Indistinguishability

Called
“advantage”

New Notion: Negligible Functions
Functions that grow slower than for any polynomial . 1/p(n) p

Definition: A function is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an s.t.
for all

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look
to poly-time algorithms like they never occur.

8

PRG Def 1: Indistinguishability

Notation: (resp.) denotes the random distribution
on -bit (resp. -bit) strings; is shorthand for .

Un Um
n m m m(n)

Definition [Indistinguishability]:
A deterministic polynomial-time computable function

 is a PRG if:

(a) It is expanding: and

(b) for every PPT algorithm (called a distinguisher) if there is a

negligible function such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)

Today’s Lecture
• Semantic security

• PRGs → Semantically-secure encryption

• Constructions of PRGs

• Real-world schemes

• Theoretical constructions

10

Semantic Security

Last time, we briefly discussed that we can view
this as a game between a “challenger” and the
adversary Eve. Let’s flesh that out.

11

For every PPT Eve, there exists a negligible fn , st for all ,

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

Semantic Security

12

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′

Eve

c

b′

Semantic Security

13

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′

Eve

c

b′

We had a good question last time: how does Eve
even know what the choices for are?m0, m1

Semantic Security

14

Challenger

1.
2.
3.

4.

k ← 𝒦
b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

b ?= b′

Eve

c

b′

Ans: we’ll let Eve choose the messages!

m0, m1

Semantic Security

15

For every PPT Eve, there exists a negligible fn such that
ε

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← Eve
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

Semantic Security

16

For every PPT Eve, there exists a negligible fn such that
ε

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← Eve
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

Why is this the “right” definition?

Intuitively: even if Eve knows which
messages are candidate plaintexts,

ciphertext still reveals no information!

PRGs → Semantically Secure Encryption

17

PRG Semantically Secure Encryption⟹
(or, How to Encrypt n+1 bits using an n-bit key)

 outputs 𝐷𝑒𝑐(𝑘, 𝑐) G(k) ⊕ c = G(k) ⊕ G(k) ⊕ m = m

o :

o Sample an -bit string at random.

𝖦𝖾𝗇(1k) → k
n

o :

o Expand to an -bit string using PRG:

o Output

𝖤𝗇𝖼(k, m) → c
k n + 1 s = G(k)

c = s ⊕ m
o :

o Expand to an -bit string using PRG:

o Output

𝖣𝖾𝖼(k, c) → m
k n + 1 s = G(k)

m = s ⊕ c

Correctness:

18

Suppose for contradiction that there exists an Eve that breaks our scheme.

That, is assume that there is a p.p.t. Eve, and polynomial function s.t.

 

	 	 	

p

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← 𝒦

b ← {0,1}
c := 𝖤𝗇𝖼(k, mb)

>
1
2

+1/p(n)

Security: your first reduction!

PRG Semantically Secure Encryption⟹

19

Assume that there is a p.p.t. Eve, a polynomial function and s.t.
p m0, m1

Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k ← {0,1}n

b ← {0,1}
c := G(k) ⊕ mb

>
1
2

+1/p(n)

Security: your first reduction!

Compare with Pr 𝖤𝗏𝖾(c) = b

|

|

(m0, m1) ← 𝖤𝗏𝖾
k′ ← {0,1}n+1

b ← {0,1}
c := k′ ⊕ mb

=
1
2

Let’s call this ρ′

Let’s call this ρ

PRG Semantically Secure Encryption⟹

20

Clearly, Eve can break security in
PRG case, but not in OTP world!

↓
Eve can distinguish pseudorandom from random!

Idea: Use Eve to break PRG indistinguishability!
21

World 0

Pr[D outputs "PRG" | y is pseudorandom]

= Pr[𝖤𝗏𝖾 outputs b′ = b | y is pseudorandom]
= ρ ≥ 1/2 + 1/p(n)

Therefore,

Pr[D outputs "PRG" | y is pseudorandom] − Pr[D outputs "PRG" | y is random]

≥ 1/𝑝(𝑛)

World 1

Pr[D outputs "PRG" | y is random]

= Pr[𝖤𝗏𝖾 outputs b′ = b | y is random]
= ρ′ = 1/2

Distinguisher :

1. Sample two messages , and a bit

2. Compute

3. If , output “PRG”

4. Otherwise, output “Random”

D(y)
m0, m1 b

b′ ← 𝖤𝗏𝖾(y ⊕ mb)
b′ = b

22

𝑸𝟏: Do PRGs exist?

(or, How to Encrypt n+1 bits using an n-bit key)

𝑸𝟐:

(Exercise: If P=NP, PRGs do not exist.)

How do we encrypt longer messages or many
messages with a fixed key?

(Length extension: If there is a PRG that stretches by one
bit, there is one that stretches by polynomially many bits)

(Pseudorandom functions: PRGs with exponentially large
stretch and “random access” to the output.)

PRG Semantically Secure Encryption⟹

23

𝑸𝟏: Do PRGs exist?

24

Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately
many times look random”)

25

Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately
many times look random”)

2. Come up with a candidate construction

MA
TH

Rijndael
(now the Advanced
Encryption Standard)

26

Constructing PRGs: Two Methodologies
The Practical Methodology

1. Start from a design framework  
(e.g. “appropriately chosen functions composed appropriately
many times look random”)

2. Come up with a candidate construction

3. Do extensive cryptanalysis.

27

Examples
• RC4: old PRG from 1987

• Proposed by Ron Rivest (of RSA fame)
• Fast and simple
• Used in TLS till 2013

• However lots of biases

• e.g. 2nd byte of output has 2/256 chance of being 0.

• In 2013, attack which made key recovery feasible with just

220 ciphertexts!

• Finally deprecated in 2015, 28 years after creation!

28

Constructing PRGs: Two Methodologies
The Foundational Methodology (much of this course)

Reduce to simpler primitives.

OWF

well-studied, average-case hard, problems

“Science wins either way” –Silvio Micali

PRG

PRF

Hashing

Digital
Signatures

29

One-way Functions (Informally)
F

domain
range

Easy to
compute

Hard to
invert

30

Source of all hard problems in cryptography!

What is a good definition?

One-way Functions (Take 1)

A function (family) where is
one-way if for every p.p.t. adversary , the following holds:

{Fn}n∈ℕ F(⋅) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

Consider for all . 𝑭𝒏(𝒙) = 𝟎 x
This is one-way according to the above definition.  
In fact, impossible to find the inverse even if has
unbounded time.

𝐴

Conclusion: not a useful/meaningful definition. 32

One-way Functions (Take 1)

A function (family) where is
one-way if for every p.p.t. adversary , the following holds:

{Fn}n∈ℕ F(⋅) : {0,1}n → {0,1}m(n)

A

Pr [A(1n, y) = x
x ← {0,1}n

y := Fn(x)] = negl(n)

33

The Right Definition: Impossible to find an inverse efficiently.

One-way Functions: The Definition

One-way Permutations:
One-to-one one-way functions with 𝑚(𝑛) = 𝑛 .

• Can always find an inverse with unbounded time

• … but should be hard with probabilistic

polynomial time

34

A function (family) where is
one-way if for every p.p.t. adversary , the following holds:

{Fn}n∈ℕ F(⋅) : {0,1}n → {0,1}m(n)

A

Pr Fn(x′) = y
x ← {0,1}n

y := Fn(x)
x′ ← A(1n, y)

= negl(n)

How to get PRG from OWF?

1. Output

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1

(Assume)m(n) > n

Does this work?

1. Output

𝖯𝖱𝖦(k)

Fn(k)

OWF → PRG, Attempt #1
Consider constructed from another OWF :

1. Compute

2. Output

Fn(x) F′ n

y := F′ n(x)
y′ := (y0, 1,y1, 1,…, yn, 1)

Is one-way?F

Yes!

Is unpredictable?𝖯𝖱𝖦

No!

Our problem:

OWFs don’t tell us anything about
how their inputs are distributed

They are only hard to invert

Next class
• How to get randomness from OWF output

• How to use this to get PRGs

• How to extend the length of PRGs

• How to get PRGs with “exponentially-large” output

39

