CIS 5560

Cryptography Lecture 2

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

1

Announcements

- HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope
 - Covers OTPs and negligible functions (this class)
 - Get started today and make use of office hours!
- Course website is up!

Secure Communication

Alice wants to send a message *m* to Bob without revealing it to Eve.

Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

• Key Generation Algorithm: $Gen(1^k) \rightarrow k$

• **Encryption Algorithm:** $Enc(k, m) \rightarrow c$

• **Decryption Algorithm:** $Dec(k, c) \rightarrow m$

Key Property: Security

Perfect Secrecy

What Eve knows after looking at *c* = What Eve knew before looking at *c*

$$\forall m \in \mathcal{M}, \forall c \in \mathcal{C}, M \text{ is a RV} \sim \mathcal{M}$$

$$\Pr[M = m | \operatorname{Enc}(\mathcal{K}, m) = c] = \Pr[M = m]$$

$$\text{after} \qquad \text{before}$$

Perfect Indistinguishability

Eve cannot distinguish between encryptions of m, m'

$$\forall m, m' \in \mathcal{M}, c \in \mathcal{C}$$
$$\Pr[\mathsf{Enc}(\mathcal{K}, m) = c] = \Pr[\mathsf{Enc}(\mathcal{K}, m') = c]$$

Perfectly secure encryption scheme

- **One-time Pad**: $Enc(k, m) = k \oplus m$
- However: Keys are as long as Messages
- WORSE, Shannon's theorem: for any perfectly secure scheme, $|\mathcal{K}| \ge |\mathcal{M}|$.

Shannon's impossibility!

Each cipher text can correspond to at most 2^n messages, but message space contains 2^{n+1} possible messages!

So it is possible (and likely!) that a given cipher text can *never* decrypt to m_1 !

$$\Pr[\mathsf{Enc}(\mathscr{K}, m_1) = c] = 0$$

Why is this bad?

- Exchanging large keys is difficult
- Need to keep large keys secure for a long time
- Generating truly random bits is kinda expensive!

So what can we do?

Let's look at our definition in more detail...

Why Perfect Indistinguishability?

For all m_0, m_1, c : $\Pr[E(\mathscr{K}, m_0) = c] = \Pr[E(\mathscr{K}, m_1) = c]$

Why do we call it indistinguishability?

For all m_0, m_1, c : Pr[world 0] = Pr[world 1]

Perfect Indistinguishability: a Turing test

For all
$$m_0, m_1, c$$
: $\Pr[E(\mathscr{K}, m_0) = c] = \Pr[E(\mathscr{K}, m_1) = c]$

Why do we call it indistinguishability?

Eve is an **all-powerful distinguisher**. She needs to decide whether *c* came from World 0 or World 1.

For every Eve and all m_0, m_1 ,

Pr Eve says that we are in world 0

 $= \Pr \left[\text{Eve says that we are in world 1} \right]$

Perfect Indistinguishability: a Turing test

For all
$$m_0, m_1, c$$
: $\Pr[E(\mathscr{K}, m_0) = c] = \Pr[E(\mathscr{K}, m_1) = c]$

Why do we call it indistinguishability?

Eve is an **all-powerful distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every Eve and all
$$m_0, m_1$$
,

$$\Pr\left[\mathsf{Eve}(c) = 0 \middle| \begin{array}{c} k \leftarrow \mathcal{K} \\ c = \mathsf{Enc}(k, m_0) \end{array} \right] = \Pr\left[\mathsf{Eve}(c) = 1 \middle| \begin{array}{c} k \leftarrow \mathcal{K} \\ c = \mathsf{Enc}(k, m_1) \end{array} \right]$$

Perfect Indistinguishability: a Turing test

World 0:World 1:
$$k \leftarrow \mathcal{K}$$
 $k \leftarrow \mathcal{K}$ $c = \operatorname{Enc}(k, m_0)$ $c = \operatorname{Enc}(k, m_1)$

Eve is an **all-powerful distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every Eve and
$$m_0, m_1$$
, $\Pr \left[\text{Eve}(c) = b \begin{vmatrix} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c = \text{Enc}(k, m_b) \end{bmatrix} = \frac{1}{2}$

So what can we do with this framing?

The Key Idea: Computationally Bounded Adversaries

Life The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms (**p.p.t.** = Probabilistic polynomial-time) (polynomial in a security parameter n)

Secure Communication

Running time of Alice and Bob? **Fixed** p.p.t. (e.g., run in time $O(n^2)$)

Running time of Eve? Arbitrary p.p.t. (e.g., run in time $O(n^2)$ or $O(n^4)$ or $O(n^{1000})$)

Computational Indistinguishability

World 0:
$$k \leftarrow \mathcal{K}$$

 $c = \operatorname{Enc}(k, m_0)$ World 1:
 $k \leftarrow \mathcal{K}$
 $c = \operatorname{Enc}(k, m_1)$

Eve is a **PPT distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every **PPT** Eve and
$$m_0, m_1$$
, $\Pr\left[\mathsf{Eve}(c) = b \middle| \begin{array}{c} k \leftarrow \mathscr{K} \\ b \leftarrow \{0,1\} \\ c = \mathsf{Enc}(k, m_b) \end{array} \right] = \frac{1}{2}$

(take 1)

Is this enough?

No!

Still subject to Shannon's impossibility!

Consider Eve that picks a random key k and

outputs 0 if D(k,c) = \mathcal{M}_0 w.p $\geq 1/2^n$

outputs 1 if $D(k,c) = \mathcal{M}_1$ w.p = 0 and a random bit if neither holds.

Bottomline: $Pr[EVE succeeds] \ge 1/2 + 1/2^n$

What do we do?

Relax guarantees further!

Computational Indistinguishability

World 0:
$$k \leftarrow \mathcal{K}$$

 $c = \operatorname{Enc}(k, m_0)$ World 1:
 $k \leftarrow \mathcal{K}$
 $c = \operatorname{Enc}(k, m_1)$

Eve is arbitrary **PPT distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every **PPT** Eve and
$$m_0, m_1$$
, $\Pr \left[\text{Eve}(c) = b \middle| \begin{array}{c} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c = \text{Enc}(k, m_b) \end{array} \right] = \frac{1}{2} + \varepsilon$

Idea: Eve can only do $\boldsymbol{\varepsilon}$ better than random guessing.

(take 2)

How small should *E* be?

- <u>In practice:</u>
 - Non-negligible (too large): $1/2^{30}$
 - Negligible: $1/2^{128}$

- In theory, we care about asymptotics:
 - Non-negligible: $\varepsilon > 1/n^2$
 - Negligible: $\varepsilon < 1/p(n)$ for every poly p

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial *p*.

```
Definition: A function \varepsilon : \mathbb{N} \to \mathbb{R} is negligible if
for every polynomial function p,
there exists an n_0 s.t.
for all n > n_0:
\varepsilon(n) < \frac{1}{p(n)}
```

Key property: Events that occur with negligible probability look **to poly-time algorithms** like they **never** occur.

Why is this the right notion?

Let Eve's ε be non-negligible $1/n^2$ (i.e. distinguishes wp $1/2 + 1/n^2$)

Eve can distinguish for $1/n^2$ fraction of keys!

Formalization: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

```
Definition: A function \varepsilon : \mathbb{N} \to \mathbb{R} is negligible if
for every polynomial function p,
there exists an n_0 s.t.
for all n > n_0:
\varepsilon(n) < \frac{1}{p(n)}
```

Question: Let $\varepsilon(n) = 1/n^{\log n}$. Is ε negligible?

New Notion: Negligible Functions

Functions that grow slower than 1/p(n) for any polynomial p.

```
Definition: A function \varepsilon : \mathbb{N} \to \mathbb{R} is negligible if
for every polynomial function p,
there exists an n_0 s.t.
for all n > n_0:
\varepsilon(n) < \frac{1}{p(n)}
```

Question (PS1) Let $\varepsilon(n)$ be a negligible function and q(n) a polynomial function. Is $\varepsilon(n)q(n)$ a negligible function?

```
Security Parameter: n (sometimes \lambda)
```

```
Definition: A function \varepsilon : \mathbb{N} \to \mathbb{R} is negligible if
for every polynomial function p,
there exists an n_0 s.t.
for all n > n_0:
\varepsilon(n) < \frac{1}{p(n)}
```

- Runtimes & success probabilities are measured as a function of *n*.
- *Want*: Honest parties run in time (fixed) polynomial in <u>*n*</u>.
- <u>Allow</u>: Adversaries to run in time (arbitrary) polynomial in <u>n</u>,
- **<u>Require</u>**: adversaries to have success probability negligible in <u>*n*</u>.

Computational Indistinguishability

Eve is arbitrary **PPT distinguisher**.

She needs to decide whether c came from World 0 or World 1.

For every **PPT** Eve, there exists a negligible fn ε , st for all m_0, m_1 , $\Pr \left[\text{Eve}(c) = b \begin{vmatrix} k \leftarrow \mathcal{K} \\ b \leftarrow \{0,1\} \\ c = \text{Enc}(k, m_b) \end{vmatrix} < \frac{1}{2} + \varepsilon(n)$

(take 2)

What about Shannon's impossibility?

Consider Eve that picks a random key k and

outputs 0 if $D(k,c) = \mathcal{M}_0$ w.p $\geq 1/2^n$

outputs 1 if $D(k,c) = \mathcal{M}_1$ w.p = 0 and a random bit if neither holds.

Bottomline: $Pr[EVE succeeds] \ge 1/2 + 1/2^n$

Negligible!

Can we achieve this definition?

Our First Crypto Tool: Pseudorandom Generators (PRG)

Pseudorandom Generators

Informally: **Deterministic** Programs that stretch a "truly random" seed into a (much) longer sequence of **"seemingly random"** bits.

Q1: How to define "seemingly random"?

Q2: Can such a G exist?

How to **Define** a Strong **Pseudo Random Number Generator?**

Def 1 [Indistinguishability]

"No polynomial-time algorithm can disting v^{i} between the output of a PRG on a random seed vs. 🕫 .andom string" = "as good as" a truly random string practical purposes.

Def 2 [Next-bit Unpredic "No polynomial-time can predict the (i+1)th bit of the output of a PRG cⁱ const i bits, better than chance"

Def 3 [Incon]

"No polynomial-time algorithm can compress the output of the PRG into a shorter string"

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function

 $G: \{0,1\}^n \to \{0,1\}^m$ is a **PRG** if:

(a) It is expanding: m > n and

(b) for every PPT algorithm D (called a distinguisher) if there is a negligible function ε such that:

 $\Pr[D(\boldsymbol{G}(\boldsymbol{U}_n)) = 1] - \Pr[D(\boldsymbol{U}_m) = 1] = \boldsymbol{\varepsilon}(n)$

Notation: U_n (resp. U_m) denotes the random distribution on *n*-bit (resp. *m*-bit) strings; *m* is shorthand for m(n).

PRG Def 1: Indistinguishability

WORLD 1: The Pseudorandom World $y \leftarrow G(U_n)$

WORLD 2: The Truly Random World

$$y \leftarrow U_m$$

PPT Distinguisher gets *y* but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can replace true randomness by the output of PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it constitutes a (polynomial-time) statistical test between PRG(seed) and a truly random string.