CIS 5560

Cryptography
 Lecture 2

Course website:

pratyushmishra.com/classes/cis-5560-s24/

Announcements

- HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope
- Covers OTPs and negligible functions (this class)
- Get started today and make use of office hours!
- Course website is up!

Secure Communication

Alice wants to send a message m to Bob without revealing it to Eve.

Key Notion: Secret-key Encryption

(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

- Key Generation Algorithm: $\operatorname{Gen}\left(1^{k}\right) \rightarrow k$
- Encryption Algorithm: $\operatorname{Enc}(k, m) \rightarrow c$
- Decryption Algorithm: $\operatorname{Dec}(k, c) \rightarrow m$

Key Property: Security

Perfect Secrecy

What Eve knows after looking at c =
What Eve knew before looking at c

$$
\begin{aligned}
& \forall m \in \mathscr{M}, \forall c \in \mathscr{C}, M \text { is a } \mathrm{RV} \sim \mathscr{M} \\
& \operatorname{Pr}[M=m \mid \operatorname{Enc}(\mathscr{K}, m)=c]=\operatorname{Pr}[M=m] \\
& \text { after }
\end{aligned}
$$

Perfect Indistinguishability

Eve cannot distinguish between encryptions of m, m^{\prime}

$$
\begin{aligned}
& \forall m, m^{\prime} \in \mathscr{M}, c \in \mathscr{C} \\
& \quad \operatorname{Pr}[\operatorname{Enc}(\mathscr{K}, m)=c]=\operatorname{Pr}\left[\operatorname{Enc}\left(\mathscr{K}, m^{\prime}\right)=c\right]
\end{aligned}
$$

Perfectly secure encryption scheme

- One-time Pad: $\operatorname{Enc}(k, m)=k \oplus m$
- However: Keys are as long as Messages
- WORSE, Shannon's theorem: for any perfectly secure scheme, $|\mathscr{K}| \geq|\mathscr{M}|$.

Shannon's impossibility!

Set of messages consistent with c $=\{D(k, c):$ all $k\}$

Each cipher text can correspond to at most 2^{n} messages, but message space contains 2^{n+1} possible messages!

So it is possible (and likely!) that a given cipher text can never decrypt to m_{1} !

$$
\operatorname{Pr}\left[\operatorname{Enc}\left(\mathscr{K}, m_{1}\right)=c\right]=0
$$

Why is this bad?

- Exchanging large keys is difficult
- Need to keep large keys secure for a long time
- Generating truly random bits is kinda expensive!

So what can we do?

Let's look at our definition in more detail...

Why Perfect Indistinguishability?

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathscr{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathscr{K}, m_{1}\right)=c\right]$
Why do we call it indistinguishability?

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

For all $m_{0}, m_{1}, c: \operatorname{Pr}[$ world 0$]=\operatorname{Pr}[$ world 1]

Perfect Indistinguishability: a Turing test

For all $m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathscr{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathscr{K}, m_{1}\right)=c\right]$
Why do we call it indistinguishability?

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is an all-powerful distinguisher. She needs to decide whether c came from World 0 or World 1.

For every Eve and all m_{0}, m_{1},
$\operatorname{Pr}[$ Eve says that we are in world 0$]$
$=\operatorname{Pr}[$ Eve says that we are in world 1$]$

Perfect Indistinguishability: a Turing test

$$
\text { For all } m_{0}, m_{1}, c: \operatorname{Pr}\left[E\left(\mathscr{K}, m_{0}\right)=c\right]=\operatorname{Pr}\left[E\left(\mathscr{K}, m_{1}\right)=c\right]
$$

Why do we call it indistinguishability?
World O:
$k \leftarrow \mathscr{K}$
$c=\operatorname{Enc}\left(k, m_{0}\right)$

$$
\begin{aligned}
& \text { World } 1 \text { : } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is an all-powerful distinguisher.
She needs to decide whether c came from World 0 or World 1.
For every Eve and all m_{0}, m_{1},
$\operatorname{Pr}\left[\operatorname{Eve}(c)=0 \left\lvert\, \begin{array}{c}k \leftarrow \mathscr{K} \\ c=\operatorname{Enc}\left(k, m_{0}\right)\end{array}\right.\right]=\operatorname{Pr}\left[\operatorname{Eve}(c)=1 \left\lvert\, \begin{array}{c}k \leftarrow \mathscr{K} \\ c=\operatorname{Enc}\left(k, m_{1}\right)\end{array}\right.\right]$

Perfect Indistinguishability: a Turing test

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is an all-powerful distinguisher.
She needs to decide whether c came from World 0 or World 1.

$$
\text { For every Eve and } m_{0}, m_{1}, \operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]=\frac{1}{2}
$$

So what can we do with this framing?

The Key Idea:
 Computationally Bounded Adversaries

Life
 The Axiom of Aloctern Crypto

Feasible Computation = randomized polynomial-time* algorithms
(D.p.t. = Probabilistic polynomial-time)
(polynomial in a security parameter n)

Secure Communication

Running time of Alice and Bob?
Fixed p.p.t. (e.g., run in time $O\left(n^{2}\right)$)
Running time of Eve?
Arbitrary p.p.t. (e.g., run in time $O\left(n^{2}\right)$ or $O\left(n^{4}\right)$ or $O\left(n^{1000}\right)$)

Computational Indistinguishability

(take 1)

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is a PPT distinguisher.
She needs to decide whether c came from World 0 or World 1.

For every PPT Eve and $m_{0}, m_{1}, \operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}k \leftarrow \mathscr{K} \\ b \leftarrow\{0,1\} \\ c=\operatorname{Enc}\left(k, m_{b}\right)\end{array}\right.\right]=\frac{1}{2}$

Is this enough?

No!

Still subject to Shannon's impossibility!

Set of messages consistent with c $=\{D(k, c):$ all $k\}$

Consider Eve that picks a random key k and outputs 0 if $D(k, c)=m_{0} \quad$ w.p $\geq 1 / \mathbf{2}^{n}$ outputs 1 if $\mathrm{D}(\mathrm{k}, \mathrm{c})=m_{1} \quad \mathrm{w} . \mathrm{p}=\mathbf{0}$ and a random bit if neither holds.
Bottomline: $\operatorname{Pr}[E V E$ succeeds $] \geq 1 / 2+1 / 2^{n}$

What do we do?

Relax guarantees further!

Computational Indistinguishability

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right) \\
& \hline
\end{aligned}
$$

World 1:

$$
\begin{aligned}
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is arbitrary PPT distinguisher.
She needs to decide whether c came from World 0 or World 1.
For every PPT Eve and $m_{0}, m_{1}, \operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}k \leftarrow \mathscr{K} \\ b \leftarrow\{0,1\} \\ c=\operatorname{Enc}\left(k, m_{b}\right)\end{array}\right.\right]=\frac{1}{2}+\varepsilon$

Idea: Eve can only do ε better than random guessing.

How small should ε be?

- In practice:
- Non-negligible (too large): $1 / 2^{30}$
- Negligible: $1 / 2^{128}$
- In theory, we care about asymptotics:
- Non-negligible: $\varepsilon>1 / n^{2}$
- Negligible: $\varepsilon<1 / p(n)$ for every poly p

New Notion: Negligible Functions

Functions that grow slower than $1 / p(n)$ for any polynomial p.

Definition: A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t.
for all $n>n_{0}$:
$\varepsilon(n)<\frac{1}{p(n)}$

Key property: Events that occur with negligible probability look to poly-time algorithms like they never occur.

Why is this the right notion?

Let Eve's ε be non-negligible $1 / n^{2}$
(i.e. distinguishes wp $1 / 2+1 / n^{2}$)

Eve can distinguish for $1 / n^{2}$ fraction of keys!

Formalization: Negligible Functions

Functions that grow slower than $1 / p(n)$ for any polynomial p.

Definition: A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t.
for all $n>n_{0}$:
$\varepsilon(n)<\frac{1}{p(n)}$

Question: Let $\varepsilon(n)=1 / n^{\log n}$. Is ε negligible?

New Notion: Negligible Functions

Functions that grow slower than $1 / p(n)$ for any polynomial p.

Definition: A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t. for all $n>n_{0}$: $\varepsilon(n)<\frac{1}{p(n)}$

Question (PS1) Let $\varepsilon(n)$ be a negligible function and $q(n)$ a polynomial function. Is $\varepsilon(n) q(n)$ a negligible function?

Security Parameter: \boldsymbol{n} (sometimes λ)

Definition: A function $\varepsilon: \mathbb{N} \rightarrow \mathbb{R}$ is negligible if for every polynomial function p, there exists an n_{0} s.t. for all $n>n_{0}$:

$$
\varepsilon(n)<\frac{1}{p(n)}
$$

- Runtimes \& success probabilities are measured as a function of n.
- Want: Honest parties run in time (fixed) polynomial in \underline{n}.
- Allow: Adversaries to run in time (arbitrary) polynomial in \underline{n},
- Require: adversaries to have success probability negligible in \underline{n}.

Computational Indistinguishability

$$
\begin{aligned}
& \text { World O: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{0}\right) \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \text { World l: } \\
& k \leftarrow \mathscr{K} \\
& c=\operatorname{Enc}\left(k, m_{1}\right)
\end{aligned}
$$

Eve is arbitrary PPT distinguisher.
She needs to decide whether c came from World 0 or World 1.
For every PPT Eve, there exists a negligible fn ε, st for all m_{0}, m_{1},

$$
\operatorname{Pr}\left[\operatorname{Eve}(c)=b \left\lvert\, \begin{array}{r}
k \leftarrow \mathscr{K} \\
b \leftarrow\{0,1\} \\
c=\operatorname{Enc}\left(k, m_{b}\right)
\end{array}\right.\right]<\frac{1}{2}+\varepsilon(n)
$$

What about Shannon's impossibility?

Set of messages consistent with c $=\{D(k, c):$ all k $\}$

Messages $\mathrm{n}+1$ bits
ciphertexts

Consider Eve that picks a random key k and outputs 0 if $\mathrm{D}(\mathrm{k}, \mathrm{c})=m_{0} \quad$ w.p $\geq 1 / \mathbf{2}^{n}$ outputs 1 if $\mathrm{D}(\mathrm{k}, \mathrm{c})=m_{1} \quad \mathbf{w} . \mathbf{p}=\mathbf{0}$

[^0]
Can we achieve this definition?

Yes!

Our First Crypto Tool:
 Pseudorandom Generators (PRG)

Pseudorandom Generators

Informally: Deterministic Programs that stretch a "truly random" seed into a (much) longer sequence of "seemingly random" bits.

Q1: How to define "seemingly random"?
Q2: Can such a G exist?

How to Define a Strong Pseudo Random Number Generator?

Def 1 [Indistinguishability]

"No polynomial-time algorithm can distingı" ‘between the output of a PRG on a random seed vs. = .andom string"
= "as good as" a truly random strin r
. practical purposes.

Def 2 [Next-bit Unpredir,
"No polynomial-time -

PRG Def 1: Indistinguishability

Definition [Indistinguishability]:

A deterministic polynomial-time computable function

$$
G:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \text { is a PRG if: }
$$

(a) It is expanding: $m>n$ and
(b) for every PPT algorithm D (called a distinguisher) if there is a negligible function ε such that:

$$
\left|\operatorname{Pr}\left[D\left(G\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[D\left(U_{m}\right)=1\right]\right|=\varepsilon(n)
$$

Notation: U_{n} (resp. U_{m}) denotes the random distribution on n-bit (resp. m-bit) strings; m is shorthand for $m(n)$.

PRG Def 1: Indistinguishability

WORLD 1:
The Pseudorandom World
$y \leftarrow G\left(U_{n}\right)$

WORLD 2:
The Truly Random World
$y \leftarrow U_{m}$

PPT Distinguisher gets y but cannot tell which world she is in

Why is this a good definition

Good for all Applications:

As long as we can find truly random seeds, can replace true randomness by the output of PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it constitutes a (polynomial-time) statistical test between PRG(seed) and a truly random string.

[^0]: and a random bit if neither holds.

 Bottomline: $\operatorname{Pr[EVE~succeeds]~} \geq 1 / 2+1 / 2^{n}$

