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CIS 5560

Lecture 2
Cryptography

Course website:  
pratyushmishra.com/classes/cis-5560-s24/ 

Slides adapted from Dan Boneh and Vinod Vaikuntanathan

http://pratyushmishra.com/classes/cis-5560-s24/


Announcements
• HW 1 is out; due Monday, Jan 29 at 5PM on Gradescope


• Covers OTPs and negligible functions (this class)

• Get started today and make use of office hours!


• Course website is up!
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Secure Communication

Key k Key k

Eavesdropper “Eve”

m
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Alice wants to send a message  to Bob without revealing it to Eve. m



Key Notion: Secret-key Encryption  
(or Symmetric-key Encryption)

Three (possibly randomized) polynomial-time algorithms:

o Key Generation Algorithm: 𝖦𝖾𝗇(1k) → k

o Encryption Algorithm: 𝖤𝗇𝖼(k, m) → c

o Decryption Algorithm: 𝖣𝖾𝖼(k, c) → m 4

Key k Key k

 𝑚
Ciphertext c ← 𝖤𝗇𝖼(k, m)

m ← 𝖣𝖾𝖼(k, c)

Message space (probability distribution)  ℳ

Key space  𝒦

Ciphertext space  𝒞



Key Property: Security

What Eve knows after looking at  
=  

What Eve knew before looking at 

c

c Pr[M = m |𝖤𝗇𝖼(𝒦, m) = c] = Pr[M = m]
beforeafter

∀m ∈ ℳ, ∀c ∈ 𝒞, M is a RV ∼ ℳ
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Perfect Secrecy

Eve cannot distinguish between 
encryptions of m, m′ 

Perfect Indistinguishability

,∀m, m′ ∈ ℳ c ∈ 𝒞
Pr[𝖤𝗇𝖼(𝒦, m) = c] = Pr[𝖤𝗇𝖼(𝒦, m′ ) = c]



Perfectly secure encryption scheme 

• One-time Pad:   𝖤𝗇𝖼(k, m) = k ⊕ m

• However:  Keys are as long as Messages

• WORSE, Shannon’s theorem:  
for any perfectly secure scheme, .|𝒦 | ≥ |ℳ |
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Shannon’s impossibility!

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Each cipher text can correspond to at most  messages, but 
message space contains  possible messages!


So it is possible (and likely!) that a given cipher text can never 
decrypt to !

2n

2n+1

m1

Keys n bits 

7Pr[𝖤𝗇𝖼(𝒦, m1) = c] = 0



Why is this bad?

• Exchanging large keys is difficult 

• Need to keep large keys secure for a long time 

• Generating truly random bits is kinda expensive!
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So what can we do?



Let’s look at our definition in 
more detail…



Why Perfect Indistinguishability?
For all 𝑚0, 𝑚1, 𝑐:Pr[𝐸(𝒦, 𝑚0) = 𝑐] = Pr[𝐸(𝒦, 𝑚1) = 𝑐]

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦
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Why do we call it indistinguishability?

For all m0, m1, c : Pr[world 0] = Pr[world 1]



Perfect Indistinguishability: a Turing test
For all 𝑚0, 𝑚1, 𝑐:Pr[𝐸(𝒦, 𝑚0) = 𝑐] = Pr[𝐸(𝒦, 𝑚1) = 𝑐]

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Why do we call it indistinguishability?

For every Eve and all ,m0, m1
Pr [𝖤𝗏𝖾 says that we are in world 0]

= Pr [𝖤𝗏𝖾 says that we are in world 1]



Perfect Indistinguishability: a Turing test
For all 𝑚0, 𝑚1, 𝑐:Pr[𝐸(𝒦, 𝑚0) = 𝑐] = Pr[𝐸(𝒦, 𝑚1) = 𝑐]

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Why do we call it indistinguishability?

For every Eve and all ,m0, m1

Pr [𝖤𝗏𝖾(c) = 0 k ← 𝒦
c = 𝖤𝗇𝖼(k, m0)] = Pr [𝖤𝗏𝖾(c) = 1 k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)]



Perfect Indistinguishability: a Turing test

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is an all-powerful distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every Eve and , m0, m1 Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

=
1
2
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So what can we do with this 
framing?



The Key Idea:  
Computationally Bounded 

Adversaries
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The Axiom of Modern Crypto

Feasible Computation = randomized polynomial-time* algorithms

(p.p.t. = Probabilistic polynomial-time)

* in recent years, quantum polynomial-time

(polynomial in a security parameter n)

Life
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Secure Communication

Alice

Eve

17

Bob

Running time of Alice and Bob?

Fixed p.p.t.  (e.g., run in time )O(n2)

Running time of Eve?

Arbitrary p.p.t.  (e.g., run in time  or  or  )O(n2) O(n4) O(n1000)



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is a PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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For every PPT Eve and , m0, m1 Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

=
1
2

Computational Indistinguishability (take 1)



Is this enough?


No!



Still subject to Shannon’s impossibility!

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Consider Eve that picks a random key k and  
	 outputs 0 if D(k,c) = 


	 outputs 1 if D(k,c) = 

	 and a random bit if neither holds.

𝑚0
𝑚1

w.p  ≥ 𝟏 /𝟐𝒏

w.p = 0

Bottomline: Pr[EVE succeeds]  1/2 +  ≥ 1/2𝑛

Keys n bits 
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What do we do?


Relax guarantees further!



World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c

For every PPT Eve and , m0, m1 Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

=
1
2

+ε
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Idea: Eve can only do  better than random guessing.ε

Computational Indistinguishability (take 2)



How small should  be?ε

• In practice:
• Non-negligible (too large): 
• Negligible: 

• In theory, we care about asymptotics:
• Non-negligible:  
• Negligible:  for every poly 

1/230

1/2128

ε > 1/n2

ε < 1/p(n) p



New Notion: Negligible Functions
Functions that grow slower than  for any polynomial . 1/p(n) p

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:

Key property: Events that occur with negligible probability look 
to poly-time algorithms like they never occur. 
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Why is this the right notion?

Let Eve’s  be non-negligible   
(i.e. distinguishes wp ) 

Eve can distinguish for  fraction of keys!

ε 1/n2

1/2 + 1/n2

1/n2
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Formalization: Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Question:  Let . Is  negligible?   ε(n) = 1/nlog n ε
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Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



New Notion: Negligible Functions
Functions that grow slower than 1/p(n) for any polynomial p. 

Question (PS1)  Let  be a negligible function and  a 
polynomial function. Is  a negligible function?   

ε(n) q(n)
ε(n)q(n)

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



Security Parameter:  (sometimes )𝒏 𝜆

• Runtimes & success probabilities are measured as a function of .

• Want: Honest parties run in time (fixed) polynomial in .  
• Allow: Adversaries to run in time (arbitrary) polynomial in ,  
• Require: adversaries to have success probability negligible in .

𝑛
𝑛

𝑛
𝑛

Definition: A function  is negligible if  
	 for every polynomial function p, 
	 for all sufficiently large n:

	  
	 


 

ε : ℕ → ℝ

ε(n) <
1

p(n)

there exists an  s.t. 
for all  

𝑛0
𝑛 > 𝑛0:



For every PPT Eve, there exists a negligible fn , st for all , 


                             

ε m0, m1

Pr 𝖤𝗏𝖾(c) = b
k ← 𝒦

b ← {0,1}
c = 𝖤𝗇𝖼(k, mb)

<
1
2

+ε(n)

World 0: World 1:

c = 𝖤𝗇𝖼(k, m0)

k ← 𝒦

c = 𝖤𝗇𝖼(k, m1)

k ← 𝒦

Eve is arbitrary PPT distinguisher.

She needs to decide whether  came from World 0 or World 1.c
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Computational Indistinguishability (take 2)



What about Shannon’s impossibility?

c
Set of messages 
consistent with c

= {D(k,c): all k} 

Messages n+1 bits 

𝑚0

𝑚1

ciphertexts 

Consider Eve that picks a random key k and  
	 outputs 0 if D(k,c) = 


	 outputs 1 if D(k,c) = 

	 and a random bit if neither holds.

𝑚0
𝑚1

w.p  ≥ 𝟏 /𝟐𝒏

w.p = 0

Bottomline: Pr[EVE succeeds]  1/2 +  ≥ 1/2𝑛

Keys n bits 
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Negligible!



Can we achieve this definition? 

Yes!



Our First Crypto Tool:  
Pseudorandom Generators (PRG)



Pseudorandom Generators

Informally: Deterministic Programs that stretch a 
“truly random” seed into a (much) longer 
sequence of “seemingly random” bits.

b1 b2 b3 ...PRG Gseed

Q2: Can such a G exist? 

Q1: How to define “seemingly random”?



How to Define a Strong  
Pseudo Random Number Generator?

Def 1 [Indistinguishability] 
“No polynomial-time algorithm can distinguish between the 
output of a PRG on a random seed vs. a truly random string”

= “as good as” a truly random string for all practical purposes. 

Def 2 [Next-bit Unpredictability] 
“No polynomial-time algorithm can predict the (i+1)th bit of the 
output of a PRG given the first i bits, better than chance”

Def 3 [Incompressibility] 
“No polynomial-time algorithm can compress the output of 
the PRG into a shorter string”

ALL THREE DEFS 

EQUIVALENT!



PRG Def 1: Indistinguishability

Notation:  (resp. ) denotes the random distribution 
on -bit (resp. -bit) strings;  is shorthand for .

Un Um
n m m m(n)

Definition [Indistinguishability]:  
A deterministic polynomial-time computable function 

                          is a PRG if:

(a) It is expanding:  and 

(b) for every PPT algorithm  (called a distinguisher) if there is a 

negligible function  such that:

G : {0,1}n → {0,1}m

m > n
D

ε

Pr[D(G(Un)) = 1] − Pr[D(Um) = 1] = ε(n)



PRG Def 1: Indistinguishability

WORLD 1:  
The Pseudorandom World

𝑦 ← 𝐺(𝑈𝑛)

WORLD 2:  
The Truly Random World

𝑦 ← 𝑈𝑚

PPT Distinguisher gets  but cannot tell which world she is iny



Why is this a good definition

Good for all Applications: 

As long as we can find truly random seeds, can 
replace true randomness by the output of 
PRG(seed) in ANY (polynomial-time) application.

If the application behaves differently, then it 
constitutes a (polynomial-time) statistical test 
between PRG(seed) and a truly random string.


